Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-molecule dynamic structural biology with vertically arranged DNA on a fluorescence microscope

Abstract

The intricate interplay between DNA and proteins is key for biological functions such as DNA replication, transcription and repair. Dynamic nanoscale observations of DNA structural features are necessary for understanding these interactions. Here we introduce graphene energy transfer with vertical nucleic acids (GETvNA), a method to investigate DNA–protein interactions that exploits the vertical orientation adopted by double-stranded DNA on graphene. This approach enables the dynamic study of DNA conformational changes via energy transfer from a probe dye to graphene, achieving spatial resolution down to the Ångström scale at subsecond temporal resolution. We measured DNA bending induced by adenine tracts, bulges, abasic sites and the binding of endonuclease IV. In addition, we observed the translocation of the O6-alkylguanine DNA alkyltransferase on DNA, reaching single base-pair resolution and detecting preferential binding to adenine tracts. This method promises widespread use for dynamical studies of nucleic acids and nucleic acid–protein interactions with resolution so far reserved for traditional structural biology techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GETvNA principle.
Fig. 2: DNA bending originating from bulges and A-tracts.
Fig. 3: DNA bending induced by Endo IV.
Fig. 4: AGT diffusion on dsDNA.

Similar content being viewed by others

Data availability

Raw and processed data supporting the findings of this work are available on Zenodo at https://doi.org/10.5281/zenodo.13794574 (ref. 89).

Code availability

A home-made Python script used to process the raw data is available as Supplementary Software alongside example data. The Python scripts used to generate the plots presented in the figures of this work, based on processed data, are available on Zenodo at https://doi.org/10.5281/zenodo.13794574 (ref. 89).

References

  1. Lerner, E. et al. Toward dynamic structural biology: two decades of single-molecule Förster resonance energy transfer. Science 359, eaan1133 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ha, T. Single-molecule fluorescence methods for the study of nucleic acids. Curr. Opin. Struct. Biol. 11, 287–292 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Schuler, B. & Eaton, W. A. Protein folding studied by single-molecule FRET. Curr. Opin. Struct. Biol. 18, 16–26 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lerner, E. et al. FRET-based dynamic structural biology: challenges, perspectives and an appeal for open-science practices. ife 10, e60416 (2021).

    CAS  Google Scholar 

  5. Quast, R. B. & Margeat, E. Single-molecule FRET on its way to structural biology in live cells. Nat. Methods 18, 344–345 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Wolff, J. O. et al. MINFLUX dissects the unimpeded walking of kinesin-1. Science 379, 1004–1010 (2023).

    Article  CAS  Google Scholar 

  7. Deguchi, T. et al. Direct observation of motor protein stepping in living cells using MINFLUX. Science 379, 1010–1015 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reinhardt, S. C. M. et al. Ångström-resolution fluorescence microscopy. Nature 617, 711–716 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Masullo, L. A., Lopez, L. F. & Stefani, F. D. A common framework for single-molecule localization using sequential structured illumination. Biophys. Rep. 2, 100036 (2022).

    CAS  Google Scholar 

  10. Sahl, S. J. et al. Direct optical measurement of intramolecular distances with angstrom precision. Science 386, 180–187 (2024).

    Article  CAS  PubMed  Google Scholar 

  11. Cole, F. et al. Super-resolved FRET and co-tracking in pMINFLUX. Nat. Photon 18, 478–484 (2024).

    Article  CAS  Google Scholar 

  12. Kaminska, I. et al. Distance dependence of single-molecule energy transfer to graphene measured with DNA origami nanopositioners. Nano Lett. 19, 4257–4262 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Kamińska, I. et al. Graphene energy transfer for single-molecule biophysics, biosensing, and super-resolution microscopy. Adv. Mater. 33, 2101099 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ghosh, A. et al. Graphene-based metal-induced energy transfer for sub-nanometre optical localization. Nat. Photonics 13, 860–865 (2019).

    Article  CAS  Google Scholar 

  15. Weber, M. et al. MINSTED nanoscopy enters the Ångström localization range. Nat. Biotechnol. 41, 569–576 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Gwosch, K. C. et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat. Methods 17, 217–224 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Thevathasan, J. V. et al. Nuclear pores as versatile reference standards for quantitative superresolution microscopy. Nat. Methods 16, 1045–1053 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Secundo, F. Conformational changes of enzymes upon immobilisation. Chem. Soc. Rev. 42, 6250–6261 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Wolf, L. K., Gao, Y. & Georgiadis, R. M. Sequence-dependent DNA immobilization: specific versus nonspecific contributions. Langmuir 20, 3357–3361 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Hamlin, R. E., Dayton, T. L., Johnson, L. E. & Johal, M. S. A QCM study of the immobilization of β-galactosidase on polyelectrolyte surfaces: effect of the terminal polyion on enzymatic surface activity. Langmuir 23, 4432–4437 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Krause, S. et al. Graphene-on-glass preparation and cleaning methods characterized by single-molecule DNA origami fluorescent probes and raman spectroscopy. ACS Nano 15, 6430–6438 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Zähringer, J. et al. Combining pMINFLUX, graphene energy transfer and DNA-PAINT for nanometer precise 3D super-resolution microscopy. Light. Sci. Appl. 12, 70 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Minetti, C. A. S. A., Remeta, D. P., Dickstein, R. & Breslauer, K. J. Energetic signatures of single base bulges: thermodynamic consequences and biological implications. Nucleic Acids Res. 38, 97–116 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Joshua-Tor, L. et al. Three-dimensional structures of bulge-containing DNA fragments. J. Mol. Biol. 225, 397–431 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Koo, H.-S., Wu, H.-M. & Crothers, D. M. DNA bending at adenine · thymine tracts. Nature 320, 501–506 (1986).

    Article  CAS  PubMed  Google Scholar 

  26. Tolstorukov, M. Y., Virnik, K. M., Adhya, S. & Zhurkin, V. B. A-tract clusters may facilitate DNA packaging in bacterial nucleoid. Nucleic Acids Res. 33, 3907–3918 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Haran, T. E. & Mohanty, U. The unique structure of A-tracts and intrinsic DNA bending. Q. Rev. Biophys. 42, 41–81 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Rohs, R. et al. The role of DNA shape in protein–DNA recognition. Nature 461, 1248–1253 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Levin, J. D., Johnson, A. W. & Demple, B. Homogeneous Escherichia coli endonuclease IV. Characterization of an enzyme that recognizes oxidative damage in DNA. J. Biol. Chem. 263, 8066–8071 (1988).

    Article  CAS  PubMed  Google Scholar 

  30. Lorenz, M. et al. DNA bending induced by high mobility group proteins studied by fluorescence resonance energy transfer. Biochemistry 38, 12150–12158 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Hillisch, A., Lorenz, M. & Diekmann, S. Recent advances in FRET: distance determination in protein–DNA complexes. Curr. Opin. Struct. Biol. 11, 201–207 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Arnott, S. & Hukins, D. W. L. Optimised parameters for A-DNA and B-DNA. Biochem. Biophys. Res. Commun. 47, 1504–1509 (1972).

    Article  CAS  PubMed  Google Scholar 

  33. Lilley, D. M. Kinking of DNA and RNA by base bulges. Proc. Natl Acad. Sci. USA 92, 7140–7142 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gu, H., Yang, W. & Seeman, N. C. DNA scissors device used to measure muts binding to DNA mis-pairs. J. Am. Chem. Soc. 132, 4352–4357 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Woźniak, A. K., Schröder, G. F., Grubmüller, H., Seidel, C. A. M. & Oesterhelt, F. Single-molecule FRET measures bends and kinks in DNA. Proc. Natl Acad. Sci. USA 105, 18337–18342 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dornberger, U., Hillisch, A., Gollmick, F. A., Fritzsche, H. & Diekmann, S. Solution structure of a five-adenine bulge loop within a DNA duplex. Biochemistry 38, 12860–12868 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Shi, X., Beauchamp, K. A., Harbury, P. B. & Herschlag, D. From a structural average to the conformational ensemble of a DNA bulge. Proc. Natl Acad. Sci. USA 111, E1473–E1480 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schreck, J. S., Ouldridge, T. E., Romano, F., Louis, A. A. & Doye, J. P. K. Characterizing the bending and flexibility induced by bulges in DNA duplexes. J. Chem. Phys. 142, 165101 (2015).

    Article  PubMed  Google Scholar 

  39. MacDonald, D., Herbert, K., Zhang, X., Polgruto, T. & Lu, P. Solution structure of an A-tract DNA bend. J. Mol. Biol. 306, 1081–1098 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Koo, H. S. & Crothers, D. M. Calibration of DNA curvature and a unified description of sequence-directed bending. Proc. Natl Acad. Sci. USA 85, 1763–1767 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Garcin, E. D. et al. DNA apurinic-apyrimidinic site binding and excision by endonuclease IV. Nat. Struct. Mol. Biol. 15, 515–522 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Hosfield, D. J., Guan, Y., Haas, B. J., Cunningham, R. P. & Tainer, J. A. Structure of the DNA repair enzyme endonuclease IV and Its DNA complex: double-nucleotide flipping at abasic sites and three-metal-ion catalysis. Cell 98, 397–408 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Stivers, J. T. 2-Aminopurine fluorescence studies of base stacking interactions at abasic sites in DNA: metal-ion and base sequence effects. Nucleic Acids Res. 26, 3837–3844 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cuniasse, P. H., Fazakerley, G. V., Guschlbauer, W., Kaplan, B. E. & Sowers, L. C. The abasic site as a challenge to DNA polymerase: a nuclear magnetic resonance study of G, C and T opposite a model abasic site. J. Mol. Biol. 213, 303–314 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. Chen, J., Dupradeau, F.-Y., Case, D. A., Turner, C. J. & Stubbe, J. Nuclear magnetic resonance structural studies and molecular modeling of duplex DNA containing normal and 4′-oxidized abasic sites. Biochemistry 46, 3096–3107 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Hoitsma, N. M. et al. AP-endonuclease 1 sculpts DNA through an anchoring tyrosine residue on the DNA intercalating loop. Nucleic Acids Res. 48, 7345–7355 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Mol, C. D., Izumi, T., Mitra, S. & Tainer, J. A. DNA-bound structures and mutants reveal abasic DNA binding by APE1 DNA repair and coordination. Nature 403, 451–456 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Zhu, C. et al. Tautomerization-dependent recognition and excision of oxidation damage in base-excision DNA repair. Proc. Natl Acad. Sci. 113, 7792–7797 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gilboa, R. et al. Structure of formamidopyrimidine-DNA glycosylase covalently complexed to DNA. J. Biol. Chem. 277, 19811–19816 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Bangalore, D. M. & Tessmer, I. Direct hOGG1–Myc interactions inhibit hOGG1 catalytic activity and recruit Myc to its promoters under oxidative stress. Nucleic Acids Res. 50, 10385–10398 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sefer, A. et al. Structural dynamics of DNA strand break sensing by PARP-1 at a single-molecule level. Nat. Commun. 13, 6569 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bangalore, D. M. et al. Automated AFM analysis of DNA bending reveals initial lesion sensing strategies of DNA glycosylases. Sci. Rep. 10, 15484 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Duguid, E. M., Rice, P. A. & He, C. The structure of the human AGT protein bound to DNA and its implications for damage detection. J. Mol. Biol. 350, 657–666 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Daniels, D. S. et al. DNA binding and nucleotide flipping by the human DNA repair protein AGT. Nat. Struct. Mol. Biol. 11, 714–720 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Kono, S. et al. Resolving the subtle details of human DNA alkyltransferase lesion search and repair mechanism by single-molecule studies. Proc. Natl Acad. Sci. USA 119, e2116218119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tessmer, I., Melikishvili, M. & Fried, M. G. Cooperative cluster formation, DNA bending and base-flipping by O6-alkylguanine-DNA alkyltransferase. Nucleic Acids Res. 40, 8296–8308 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Strahs, D. & Schlick, T. A-tract bending: insights into experimental structures by computational models. J. Mol. Biol. 301, 643–663 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Abbondanzieri, E. A., Greenleaf, W. J., Shaevitz, J. W., Landick, R. & Block, S. M. Direct observation of base-pair stepping by RNA polymerase. Nature 438, 460–465 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cheng, W., Arunajadai, S. G., Moffitt, J. R., Tinoco, I. & Bustamante, C. Single–base pair unwinding and asynchronous RNA release by the hepatitis C virus NS3 helicase. Science 333, 1746–1749 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Qi, Z., Pugh, R. A., Spies, M. & Chemla, Y. R. Sequence-dependent base pair stepping dynamics in XPD helicase unwinding. eLife 2, e00334 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Righini, M. et al. Full molecular trajectories of RNA polymerase at single base-pair resolution. Proc. Natl Acad. Sci. USA 115, 1286–1291 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang, H. et al. DNA bending and unbending by MutS govern mismatch recognition and specificity. Proc. Natl Acad. Sci. USA 100, 14822–14827 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pérez-Martín, J. & de Lorenzo, V. Clues and consequences of DNA bending in transcription. Annu. Rev. Microbiol 51, 593–628 (1997).

    Article  PubMed  Google Scholar 

  64. Struhl, K. & Segal, E. Determinants of nucleosome positioning. Nat. Struct. Mol. Biol. 20, 267–273 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Peng, S. et al. Target search and recognition mechanisms of glycosylase AlkD revealed by scanning FRET-FCS and Markov state models. Proc. Natl Acad. Sci. USA 117, 21889–21895 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Richter, L., Szalai, A. M., Manzanares-Palenzuela, C. L., Kamińska, I. & Tinnefeld, P. Exploring the synergies of single-molecule fluorescence and 2D materials coupled by DNA. Adv. Mater. 35, 2303152 (2023).

    Article  CAS  Google Scholar 

  67. Li, X. et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 4359–4363 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Vera, A. M. et al. Cohesin-dockerin code in cellulosomal dual binding modes and its allosteric regulation by proline isomerization. Structure 29, 587–597.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Preus, S., Noer, S. L., Hildebrandt, L. L., Gudnason, D. & Birkedal, V. iSMS: single-molecule FRET microscopy software. Nat. Methods 12, 593–594 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Maus, M. et al. An experimental comparison of the maximum likelihood estimation and nonlinear least-squares fluorescence lifetime analysis of single molecules. Anal. Chem. 73, 2078–2086 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Thiele, J. C., Nevskyi, O., Helmerich, D. A., Sauer, M. & Enderlein, J. Advanced data analysis for fluorescence-lifetime single-molecule localization microscopy. Front. Bioinform. 1, 1–11 (2021).

    Article  Google Scholar 

  72. Gietl, A. et al. Eukaryotic and archaeal TBP and TFB/TF(II)B follow different promoter DNA bending pathways. Nucleic Acids Res. 42, 6219–6231 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Phillips, J. C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 153, 044130 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ivani, I. et al. Parmbsc1: a refined force field for DNA simulations. Nat. Methods 13, 55–58 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  CAS  Google Scholar 

  76. Yoo, J. & Aksimentiev, A. New tricks for old dogs: improving the accuracy of biomolecular force fields by pair-specific corrections to non-bonded interactions. Phys. Chem. Chem. Phys. 20, 8432–8449 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Batcho, P. F., Case, D. A. & Schlick, T. Optimized particle-mesh Ewald/multiple-time step integration for molecular dynamics simulations. J. Chem. Phys. 115, 4003–4018 (2001).

    Article  CAS  Google Scholar 

  79. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Article  CAS  Google Scholar 

  80. Andersen, H. C. Rattle: a ‘velocity’ version of the shake algorithm for molecular dynamics calculations. J. Comput. Phys. 52, 24–34 (1983).

    Article  CAS  Google Scholar 

  81. Miyamoto, S. & Kollman, P. A. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 13, 952–962 (1992).

    Article  CAS  Google Scholar 

  82. Martyna, G. J., Tobias, D. J. & Klein, M. L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101, 4177–4189 (1994).

    Article  CAS  Google Scholar 

  83. Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. & Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045–1097 (1992).

    Article  CAS  Google Scholar 

  84. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph 14, 33–38 (1996).

    Article  CAS  PubMed  Google Scholar 

  85. Michaud-Agrawal, N., Denning, E. J., Woolf, T. B. & Beckstein, O. MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 32, 2319–2327 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Maffeo, C. & Aksimentiev, A. MrDNA: a multi-resolution model for predicting the structure and dynamics of DNA systems. Nucleic Acids Res. 48, 5135–5146 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Maffeo, C., Yoo, J. & Aksimentiev, A. De novo reconstruction of DNA origami structures through atomistic molecular dynamics simulation. Nucleic Acids Res. 44, 3013–3019 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li, S., Olson, W. K. & Lu, X.-J. Web 3DNA 2.0 for the analysis, visualization, and modeling of 3D nucleic acid structures. Nucleic Acids Res. 47, W26–W34 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tinnefeld, P. Datasets and scripts for: Single-molecule dynamic structural biology with vertically arranged DNA on a fluorescence microscope (1.0) [Data set]. Zenodo https://doi.org/10.5281/zenodo.13794574 (2024).

Download references

Acknowledgements

We thank the members of the Tinnefeld group for discussions and feedback. L.R. acknowledges S. Krause who suggested preliminary experiments leading to the discovery of GETvNA. Furthermore, we thank P. Schüler, T. Schröder and J. Zähringer for fruitful discussions. P.T. and I.K. thank, for financial support by the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) under grant numbers TI 329/14-1 and KA 5449/2-1, the excellence cluster e-conversion under Germany’s Excellence Strategy – EXC 2089/1 – 390776260, and by the Center for NanoScience (CeNS). P.T thanks funding by the Federal Ministry of Education and Research (BMBF, 13N16929) and the Free State of Bavaria under the Excellence Strategy of the Federal Government and the Länder through the ONE MUNICH Project Munich Multiscale Biofabrication. L.R. acknowledges support by the Studienstiftung des deutschen Volkes. A.M.S. is thankful for the support by the Alexander von Humboldt foundation under reference Ref 3.2-ARG-1220722-GF-P. I.K. acknowledges support by the National Science Center of Poland (Sonata 2019/35/D/ST5/00958). K.C. and A.A. were supported by the US National Science Foundation (DMR-1827346) and the Human Frontier Science Program (RGP0047/2020). The supercomputer time was provided through ACESSS allocation grant MCA05S028 (A.A.) and the Leadership Resource Allocation MCB20012 on Frontera of the Texas Advanced Computing Centre (A.A). I.T. acknowledges financial support by the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation), under grant number TE671/7-1. A.M.V. acknowledges financial support by the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) under project number 522200875.

Author information

Authors and Affiliations

Authors

Contributions

P.T., A.M.S. and L.R. conceived the concept and experiments. A.M.S., G.F. and L.R. designed the experiments and the analysis pipeline, and curated data. A.M.S., G.F., L.R., J.H., M.-Z.K., B.J., A.J., A.M.V. and I.K. conducted experiments. A.M.S., G.F. and M.R.J.D. developed the analysis software. A.M.S., G.F., L.R., J.H., M.-Z.K. and B.J. analyzed data. K.C. and A.A. contributed the MD simulations. A.M.V. contributed to the design of studies involving Endo IV and their interpretation. I.T. contributed to the design and interpretation of experiments involving AGT and contributed AGT samples. B.J., M.-Z.K. and A.M.V. prepared Endo IV samples. I.K. prepared graphene-on-glass samples, optimized their preparation protocol and interpreted data. P.T. supervised the study. A.M.S. supervised data acquisition, analysis and visualization. A.M.S., G.F., L.R. and P.T. interpreted data and wrote the paper. All authors reviewed and approved the final paper.

Corresponding authors

Correspondence to Alan M. Szalai or Philip Tinnefeld.

Ethics declarations

Competing interests

P.T., A.M.S., L.R., G.F. and I.K. are inventors on a US provisional patent application #18/672,616 related to GETvNA. The other authors declare no competing interests.

Peer review

Peer review information

Nature Methods thanks Pallav Kosuri and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available. Primary Handling Editor: Rita Strack, in collaboration with the Nature Methods team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Extended field-of-views of hybrid DNA constructs immobilized on graphene.

Systems containing dsDNA segments of 36 bp, 45 bp, 51 bp and 66 bp length are depicted. For the 36 bp, 51 bp and 66 bp cases the white dotted boxes mark the areas shown in Fig. 1b. The histograms of non-deconvoluted fluorescence lifetime of each detected spot show that the fluorescence lifetimes are homogeneous for large areas. A shift to larger fluorescence lifetimes is observed when the length of the dsDNA segment is increased.

Extended Data Fig. 2 Cramér-Rao lower bound for the localization uncertainty.

σz,CRB denotes the theoretically attained axial precision and z the distance to graphene. The dependency is shown for three different numbers of photons N. An unquenched fluorescence lifetime of 3.51 ns was used. a) \({{SBR}}_{z=\infty }=10\) and b) \({{SBR}}_{z=\infty }=75\).

Extended Data Fig. 3 Contribution of the linker to the axial position of single molecules.

a) Sketch showing the systems used to estimate the contribution of the linker. Left: system containing a dsDNA segment with 66 bp, internally labeled at base #45. Right: system containing a dsDNA segment with 45 bp, labeled at one of its end bases. The negative charges are highlighted, since they are responsible for extending outwards the negatively charged dye (ATTO 542), which is attached through a six-atom carbon linker. b) Distribution of angles with respect to the z-axis obtained for the 40–45 bp segment from the MD simulation trajectory of the 51 bp system. The methodology to calculate this angle was analogous to the one described in the caption of Fig. S7d. c) Height distributions for the two systems described in a). d) Representation of the trigonometric calculations performed to retrieve the linker length assuming a model where the linker is stretched, extending outwards of the dsDNA segment (following the direction of the dsDNA segment for the end-labeled case, and oriented perpendicularly for the internally labeled scenario). The 25° angle used was obtained from the histogram shown in b), and the 1.14 nm height difference was extracted from the histograms shown in c).

Extended Data Fig. 4 Comparison between ranges of bending angles compatible with a given measured energy transfer efficiency for GET and FRET.

a) Sketch showing a simple model for kinked dsDNA, consisting of two rigid cylinders which can rotate around their respective axes (with torsion angles φ and ψ, respectively). They move with respect to each other (\({{\boldsymbol{x}}}_{{\boldsymbol{0}}}{,\,{\boldsymbol{y}}}_{{\boldsymbol{0}}}\) and \({{\boldsymbol{z}}}_{{\boldsymbol{0}}}\) represent the displacements in three dimensions of the bottom of the upper cylinder with respect to the top of the lower one), and bend by an angle \({\boldsymbol{\theta }}\). b) Plot showing the minimum and maximum bending angle \({\boldsymbol{\theta }}\) compatible with a given energy transfer efficiency between 40% and 60%, for GET and FRET. The model shown in a) was considered for the calculations, with 0.34 nm base pair (bp) length, 1 nm dsDNA radius, and 10.5 bp per double helix full turn as physical parameters. Two different labeling strategies were chosen for the two methods: for GET, the kink was positioned at 36 bp distance from graphene, and the dye at 30 bp distance from the kink, in the upper segment; for FRET, the two dyes were both positioned at 8 bp distance from the kink. \({{\boldsymbol{d}}}_{{\boldsymbol{0}}}\) for GET and \({{\boldsymbol{r}}}_{{\boldsymbol{0}}}\) for FRET were set at 17.7 nm and 5 nm respectively. For each value of the energy transfer efficiency \({{\boldsymbol{x}}}_{{\boldsymbol{0}}}{,\,{\boldsymbol{y}}}_{{\boldsymbol{0}}}\) were varied from −1 nm to 1 nm in steps of 0.5 nm, \({{\boldsymbol{z}}}_{{\boldsymbol{0}}}\) was varied between 0 nm and 1 nm (with no steps in between), φ and ψ were varied from −90° to 90° in steps of 1°. For each combination of these parameters, the value of \({\boldsymbol{\theta }}\) leading to the chosen energy transfer efficiency was computed. The plotted minimum and maximum values of \({\boldsymbol{\theta }}\) refer to all the possible combinations of parameters.

Extended Data Fig. 5 Exemplary time traces of systems where the dsDNA segment contained a bulge.

Four example time traces are shown for each bulge (3 A, 5 A, and 7 A). The fluorescence intensity time traces are shown on the left, and the fluorescence decays and corresponding monoexponential fits on the right. For each case, the fitted fluorescence lifetime and the corresponding bending angle are shown on top of the fluorescence decay plots. The rectangles from the intensity time traces highlight the photons used to obtain the fluorescence lifetime decay curves.

Extended Data Fig. 6 Intensity-based smFRET studies of dsDNA containing an AP site in the presence and absence of Endo IV.

The influence of having a PTO modification framed by the 5′-neighboring nucleotide and the AP site is evaluated. a) Example smFRET time traces of the system containing dsDNA with AP site without PTO modification, in the absence (top) and presence (bottom) of Endo IV. On the right, the histograms obtained from the shown traces are depicted. b) FRET efficiency histograms obtained from 75 (dsDNA containing AP, without PTO, in the absence of Endo IV) and 55 traces (dsDNA containing AP, without PTO, in the presence of Endo IV). Here, the FRET efficiencies obtained from every movie frame from all traces are computed together as independent FRET efficiency values. c) and d) Same description as in a) and b), but for systems containing both AP site and PTO modification. 30 traces were analyzed for the population histogram without Endo IV and 66 traces for the case, where Endo IV was added to the solution. Due to the intensity-based measurement protocol, the histograms from b) and d) are weighted by the respective dwell times of each state. This contrasts measurements on graphene, where the fluorescence lifetime of each state is independent of any weighing. As mentioned before, the presented smFRET data are based on the fluorescence intensity and not the fluorescence lifetime as used for GETvNA.

Extended Data Fig. 7 Exemplary time traces of systems where the dsDNA segment contained an AP site and a PTO modification, in the absence of Endo IV.

Seven example time traces are shown. The fluorescence intensity time traces are shown on the left, and the fluorescence decays and corresponding monoexponential fits on the right. For each case, the fitted fluorescence lifetime and the corresponding bending angle are shown next to the fluorescence decays. The rectangles from the intensity time traces highlight the photons used to obtain the fluorescence lifetime decay curve.

Extended Data Fig. 8 Exemplary time traces showing switching between states, corresponding to systems where the dsDNA segment contained an AP site and a PTO modification, in the presence of Endo IV.

Seven exemplary time traces are shown. The fluorescence intensity time traces are depicted on the left, and the fluorescence decays and corresponding monoexponential fits on the right. The color-coded rectangles from the intensity time traces highlight the photons used to obtain each fluorescence lifetime decay curve. The fitted fluorescence lifetime and the corresponding bending angle are shown next to the fluorescence decays.

Extended Data Fig. 9 Distribution of heights obtained from traces not showing switching between states determined by GETvNA in the presence of Endo IV.

The dsDNA contained an AP site and a PTO modification. For every individual trace, a single height was computed, obtained from the fluorescence lifetime fitted using all the photons detected before photobleaching. A three-peak Gaussian distribution was used to fit the experimental distribution. The bending angles corresponding to each subpopulation are also shown.

Extended Data Fig. 10 Exemplary time trace of AGT cluster diffusing on DNA without A-tract.

Left: 60-second-long time window. Right: Zoom-in on the region marked by the gray dotted-rectangle. The fast and slow mode are highlighted by arrows.

Supplementary information

Supplementary Information

Supplementary Discussions 1–3, Figs. 1–28 and Tables 1 and 2.

Reporting Summary

Peer Review File

Supplementary Video 1

MD simulation movie (1,209 ns) for construct containing 36 bp dsDNA.

Supplementary Video 2

MD simulation movie (1,200 ns) for construct containing 51 bp dsDNA.

Supplementary Video 3

MD simulation movie (1,099 ns) for construct containing 66 bp dsDNA.

Supplementary Data Table 1

List of sequences of all the oligonucleotides used in this study.

Supplementary Software

Python script containing routines to analyze the raw data from this study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szalai, A.M., Ferrari, G., Richter, L. et al. Single-molecule dynamic structural biology with vertically arranged DNA on a fluorescence microscope. Nat Methods 22, 135–144 (2025). https://doi.org/10.1038/s41592-024-02498-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41592-024-02498-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing