Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vibrational fiber photometry: label-free and reporter-free minimally invasive Raman spectroscopy deep in the mouse brain

Abstract

Optical approaches to monitor neural activity are transforming neuroscience, owing to a fast-evolving palette of genetically encoded molecular reporters. However, the field still requires robust and label-free technologies to monitor the multifaceted biomolecular changes accompanying brain development, aging or disease. Here, we have developed vibrational fiber photometry as a low-invasive method for label-free monitoring of the biomolecular content of arbitrarily deep regions of the mouse brain in vivo through spontaneous Raman spectroscopy. Using a tapered fiber probe as thin as 1 µm at its tip, we elucidate the cytoarchitecture of the mouse brain, monitor molecular alterations caused by traumatic brain injury, as well as detect markers of brain metastasis with high accuracy. We view our approach, which introduces a deep learning algorithm to suppress probe background, as a promising complement to the existing palette of tools for the optical interrogation of neural function, with application to fundamental and preclinical investigations of the brain and other organs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Deep brain vibrational photometry with a thin tapered fiber.
Fig. 2: Vibrational photometry for the spectral characterization of melanoma brain metastasis.
Fig. 3: Ratiometric diagnostics.
Fig. 4: Vibrational photometry for the spectral characterization of traumatic brain injury.
Fig. 5: Technological perspectives.

Similar content being viewed by others

Data availability

The data underlying the conclusions of this manuscript are available from the corresponding authors and the following link: https://doi.org/10.5281/zenodo.14016545 (ref. 70), under CC BY-NC-SA 4.0.

Code availability

The code underlying the conclusions of this manuscript is available from the corresponding authors and at the following link: https://doi.org/10.5281/zenodo.14016545 (ref. 70), under CC BY-NC-SA 4.0.

References

  1. Abdelfattah, A. et al. Neurophotonic tools for microscopic measurements and manipulation: Status report. Neurophotonics 9, 1–86 (2022).

    Google Scholar 

  2. Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360, eaat4422 (2018).

    PubMed  PubMed Central  Google Scholar 

  3. Sabatini, B. L. & Tian, L. Imaging neurotransmitter and neuromodulator dynamics in vivo with genetically encoded indicators. Neuron 108, 17–32 (2020).

    CAS  PubMed  Google Scholar 

  4. Day‐Cooney, J., Dalangin, R., Zhong, H. & Mao, T. Genetically encoded fluorescent sensors for imaging neuronal dynamics in vivo. J. Neurochem. 164, 284–308 (2023).

    PubMed  Google Scholar 

  5. Pal, A. & Tian, L. Imaging voltage and brain chemistry with genetically encoded sensors and modulators. Curr. Opin. Chem. Biol. 57, 166–176 (2020).

    CAS  PubMed  Google Scholar 

  6. Moreaux, L. C. et al. Integrated neurophotonics: toward dense volumetric interrogation of brain circuit activity – at depth and in real time. Neuron 108, 66–92 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Jones, R. R., Hooper, D. C., Zhang, L., Wolverson, D. & Valev, V. K. Raman techniques: fundamentals and frontiers. Nanoscale Res. Lett. 14, 1–34 (2019).

    Google Scholar 

  8. Lee, H. J. et al. Label-free vibrational spectroscopic imaging of neuronal membrane potential. J. Phys. Chem. Lett. 8, 1932–1936 (2017).

    CAS  PubMed  Google Scholar 

  9. Zhang, L. et al. Spectral tracing of deuterium for imaging glucose metabolism. Nat. Biomed. Eng. 3, 402–413 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. DePaoli, D. et al. Rise of Raman spectroscopy in neurosurgery: a review. J. Biomed. Opt. 25, 1–36 (2020).

    PubMed  Google Scholar 

  11. Jermyn, M. et al. Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci. Transl. Med. 7, 274ra19 (2015).

    CAS  PubMed  Google Scholar 

  12. Ji, M. et al. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy. Sci. Transl. Med. 5, 201ra119-201ra119 (2013).

    Google Scholar 

  13. Orringer, D. A. et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy. Nat. Biomed. Eng. 1, 0027 (2017).

    PubMed  PubMed Central  Google Scholar 

  14. Trägårdh, J. et al. Label-free CARS microscopy through a multimode fiber endoscope. Opt. Express 27, 30055–30066 (2019).

    PubMed  Google Scholar 

  15. Lombardini, A. et al. High-resolution multimodal flexible coherent Raman endoscope. Light Sci. Appl. 7, 10 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. Desroches, J. et al. A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy. Sci. Rep. 8, 1792 (2018).

    PubMed  PubMed Central  Google Scholar 

  17. Liu, Z. et al. Raman fiber photometry for understanding mitochondrial superoxide burst and extracellular calcium ion influx upon acute hypoxia in the brain of freely moving animals. Angew. Chem. Int. Ed. Engl. 61, e202111630 (2022).

    CAS  PubMed  Google Scholar 

  18. Gebrekidan, M. T., Knipfer, C. & Braeuer, A. S. Refinement of spectra using a deep neural network: fully automated removal of noise and background. J. Raman Spectrosc. 52, 723–736 (2021).

    CAS  Google Scholar 

  19. Wahl, J., Sjödahl, M. & Ramser, K. Single-step preprocessing of Raman spectra using convolutional neural networks. Appl. Spectrosc. 74, 427–438 (2020).

    CAS  PubMed  Google Scholar 

  20. Huang, J. et al. Remote SERS detection at a 10-m scale using silica fiber SERS probes coupled with a convolutional neural network. Opt. Lett. 48, 896–899 (2023).

    CAS  PubMed  Google Scholar 

  21. Kazemzadeh, M. et al. Cascaded deep convolutional neural networks as improved methods of preprocessing Raman spectroscopy data. Anal. Chem. 94, 12907–12918 (2022).

    CAS  PubMed  Google Scholar 

  22. Castellani, G., Croese, T., Peralta Ramos, J. M. & Schwartz, M. Transforming the understanding of brain immunity. Science 380, eabo7649 (2023).

    CAS  PubMed  Google Scholar 

  23. Mancusi, R. & Monje, M. The neuroscience of cancer. Nature 618, 467–479 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Heng, H. P. S., Shu, C., Zheng, W., Lin, K. & Huang, Z. Advances in real‐time fiber‐optic Raman spectroscopy for early cancer diagnosis: pushing the frontier into clinical endoscopic applications. Transl. Biophotonics 3, e202000018 (2021).

    Google Scholar 

  25. Pisanello, M. et al. Tailoring light delivery for optogenetics by modal demultiplexing in tapered optical fibers. Sci. Rep. 8, 4467 (2018).

    PubMed  PubMed Central  Google Scholar 

  26. Stibůrek, M. et al. 110 μm thin endo-microscope for deep-brain in vivo observations of neuronal connectivity, activity and blood flow dynamics. Nat. Commun. 14(1), 1897 (2023).

    PubMed  PubMed Central  Google Scholar 

  27. Pisanello, F. et al. Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber. Nat. Neurosci. 20, 1180–1188 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Pisano, F. et al. Depth-resolved fiber photometry with a single tapered optical fiber implant. Nat. Methods 16, 1185–1192 (2019).

    CAS  PubMed  Google Scholar 

  29. Lee, J., Wang, W. & Sabatini, B. L. Anatomically segregated basal ganglia pathways allow parallel behavioral modulation. Nat. Neurosci. 23, 1388–1398 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Koljenović, S. et al. Tissue characterization using high wave number Raman spectroscopy. J. Biomed. Opt. 10, 031116 (2005).

    PubMed  Google Scholar 

  31. Koljenović, S. et al. Raman spectroscopic characterization of porcine brain tissue using a single fiber-optic probe. Anal. Chem. 79, 557–564 (2007).

    PubMed  Google Scholar 

  32. Kirsch, M., Schackert, G., Salzer, R. & Krafft, C. Raman spectroscopic imaging for in vivo detection of cerebral brain metastases. Anal. Bioanal. Chem. 398, 1707–1713 (2010).

    CAS  PubMed  Google Scholar 

  33. Priego, N. et al. STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis. Nat. Med. 24, 1024–1035 (2018).

    CAS  PubMed  Google Scholar 

  34. Krafft, C., Kirsch, M., Beleites, C., Schackert, G. & Salzer, R. Methodology for fiber-optic Raman mapping and FTIR imaging of metastases in mouse brains. Anal. Bioanal. Chem. 389, 1133–1142 (2007).

    CAS  PubMed  Google Scholar 

  35. Short, K. W., Carpenter, S., Freyer, J. P. & Mourant, J. R. Raman spectroscopy detects biochemical changes due to proliferation in mammalian cell cultures. Biophys. J. 88, 4274–4288 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Siam, L. et al. The metastatic infiltration at the metastasis/brain parenchyma-interface is very heterogeneous and has a significant impact on survival in a prospective study. Oncotarget 6, 29254–29267 (2015).

    PubMed  PubMed Central  Google Scholar 

  37. Dankner, M. et al. Invasive growth associated with cold-inducible RNA-binding protein expression drives recurrence of surgically resected brain metastases. Neuro Oncol. 23, 1470–1480 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Berghoff, A. S. et al. Invasion patterns in brain metastases of solid cancers. Neuro Oncol 15, 1664–1672 (2013).

    PubMed  PubMed Central  Google Scholar 

  39. Surmacki, J. M. et al. Label-free monitoring of tissue biochemistry following traumatic brain injury using Raman spectroscopy. Analyst 142, 132–139 (2016).

    PubMed  PubMed Central  Google Scholar 

  40. Jamieson, L. E., Li, A., Faulds, K. & Graham, D. Ratiometric analysis using Raman spectroscopy as a powerful predictor of structural properties of fatty acids. R. Soc. Open Sci. 5, 181483 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. van Doorn, H. C. et al. Raman spectroscopy for guidance of vulvar cancer surgery: a pilot study. Biomed. Opt. Express 12, 3008–3020 (2021).

    PubMed  PubMed Central  Google Scholar 

  42. Marro, M. et al. Dynamic molecular monitoring of retina inflammation by in vivo Raman spectroscopy coupled with multivariate analysis. J. Biophotonics 7, 724–734 (2014).

    CAS  PubMed  Google Scholar 

  43. Ow, Y.-L. P., Green, D. R., Hao, Z. & Mak, T. W. Cytochrome c: functions beyond respiration. Nat. Rev. Mol. Cell Biol. 9, 532–542 (2008).

    CAS  PubMed  Google Scholar 

  44. Amorini, A. M. et al. Severity of experimental traumatic brain injury modulates changes in concentrations of cerebral free amino acids. J. Cell. Mol. Med. 21, 530–542 (2017).

    CAS  PubMed  Google Scholar 

  45. Bianco, M. et al. Orthogonalization of far-field detection in tapered optical fibers for depth-selective fiber photometry in brain tissue. APL Photonics 7, 026106 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang, Z. et al. Tapered optical fiber probe assembled with plasmonic nanostructures for surface-enhanced Raman scattering application. ACS Appl. Mater. Interfaces 7, 17247–17254 (2015).

    CAS  PubMed  Google Scholar 

  47. Li, T., Yu, Z., Wang, Z., Zhu, Y. & Zhang, J. Optimized tapered fiber decorated by Ag nanoparticles for Raman measurement with high sensitivity. Sensors 21, 2300 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zheng, D. et al. Toward plasmonic neural probes: SERS detection of neurotransmitters through gold‐nanoislands‐decorated tapered optical fibers with sub‐10 nm gaps. Adv. Mater. 35, 2200902 (2023).

    CAS  Google Scholar 

  49. Gusachenko, I., Chen, M. & Dholakia, K. Raman imaging through a single multimode fibre. Opt. Express 25, 13782–13798 (2017).

    CAS  PubMed  Google Scholar 

  50. Collard, L. et al. Holographic manipulation of nanostructured fiber optics enables spatially‐resolved, reconfigurable optical control of plasmonic local field enhancement and SERS. Small 18, e2200975 (2022).

    PubMed  Google Scholar 

  51. Sharma, K. et al. Multifunctional optrode for opsin delivery, optical stimulation, and electrophysiological recordings in freely moving rats. J. Neural Eng. 18, 1741–2552 (2021).

    Google Scholar 

  52. Qazi, R. et al. Wireless optofluidic brain probes for chronic neuropharmacology and photostimulation. Nat. Biomed. Eng. 3, 655–669 (2019).

    PubMed  Google Scholar 

  53. Spagnolo, B. et al. Tapered fibertrodes for optoelectrical neural interfacing in small brain volumes with reduced artefacts. Nat. Mater. 21, 826–835 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, S., Liu, Z., Zhang, Z., Wang, W. & Tian, Y. High‐density optophysiology platform for recording intracellular and extracellular signals across the brain of free‐moving animals. Angew. Chem. Int. Ed. Engl. 62, e202301382 (2023).

    CAS  PubMed  Google Scholar 

  55. Krishna, S. et al. Glioblastoma remodelling of human neural circuits decreases survival. Nature 617, 599–607 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sanchez-Aguilera, A. et al. Machine learning identifies experimental brain metastasis subtypes based on their influence on neural circuits. Cancer Cell 41, 1637–1649 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Eichmüller, O. L. & Knoblich, J. A. Human cerebral organoids: a new tool for clinical neurology research. Nat. Rev. Neurol. 18, 661–680 (2022).

    PubMed  PubMed Central  Google Scholar 

  58. Trujillo, C. A. et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell 25, 558–569 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Le Duigou, C. et al. Imaging pathological activities of human brain tissue in organotypic culture. J. Neurosci. Methods 298, 33–44 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. Sileo, L., Pisanello, M., De Vittorio, M. & Pisanello, F. Fabrication of multipoint light emitting optical fibers for optogenetics. In Proceedings of SPIE: Optical Techniques in Neurosurgery, Neurophotonics, and Optogenetics II 9305, 93052O (2015).

  61. Maglie, E. et al. Ray tracing models for estimating light collection properties of microstructured tapered optical fibers for optical neural interfaces. Opt. Lett. 45, 3856–3859 (2020).

    PubMed  Google Scholar 

  62. Shi, L., Sordillo, L. A., Rodríguez-Contreras, A. & Alfano, R. Transmission in near-infrared optical windows for deep brain imaging. J. Biophotonics 9, 38–43 (2016).

    CAS  PubMed  Google Scholar 

  63. Pisanello, M. et al. The three-dimensional signal collection field for fiber photometry in brain tissue. Front. Neurosci. 13, 82 (2019).

    PubMed  PubMed Central  Google Scholar 

  64. Tessier, M. et al. Bumetanide induces post-traumatic microglia–interneuron contact to promote neurogenesis and recovery. Brain 146, 4247–4261 (2023).

    PubMed  PubMed Central  Google Scholar 

  65. Le Losq, C. Rampy: a Python library for processing spectroscopic (IR, Raman, XAS…) data. Zenodo https://doi.org/10.5281/ZENODO.4715040 (2018).

  66. Shalabaeva, V. et al. Time resolved and label free monitoring of extracellular metabolites by surface enhanced Raman spectroscopy. PLoS One 12, e0175581 (2017).

    PubMed  PubMed Central  Google Scholar 

  67. Di Mascolo, D., Coclite, A., Gentile, F. & Francardi, M. Quantitative micro-Raman analysis of micro-particles in drug delivery. Nanoscale Adv. 1, 1541–1552 (2019).

    PubMed  PubMed Central  Google Scholar 

  68. Das, G. et al. Principal component analysis based methodology to distinguish protein SERS spectra. J. Mol. Struct. 993, 500–505 (2011).

    CAS  Google Scholar 

  69. Rodriguez, A. & Laio, A. Clustering by fast search and find of density peaks. Science 344, 1492–1496 (2014).

    CAS  PubMed  Google Scholar 

  70. Pisano, F. et al. Data and code for paper: vibrational fiber photometry: label-free and reporter-free minimally invasive Raman spectroscopy deep in the mouse brain. Zenodo https://doi.org/10.5281/zenodo.14016545 (2024).

Download references

Acknowledgements

This work is dedicated to the memory of Prof. Marco Grande and to his legacy of scientific excellence and human kindness. M.M.-M, E.C., T.J.P., A.B., F.T., L.C., M.D.V., F.D.A., L.M.P., M.V. and F. Pisanello acknowledge funding from the European Union’s Horizon 2020 FET-Open Programme project NANOBRIGHT under grant agreement 828972. F. Pisano, M.B., M.P., L.S., M.D.V. and F. Pisanello acknowledge funding from the European Union’s Horizon 2020 Research and Innovation Programme project DEEPER under grant agreement 101016787. This research received support from the European Community under the program Horizon 2020 project ProID under grant agreement 964363. F. Pisano acknowledges funding from PARD 2024 from the University of Padua. M.M.-M. acknowledges funding from a postdoctoral grant (2023) from the Scientific Foundation of the Spanish Association Against Cancer. F.G. acknowledges funding from Associazione Italiana per la Ricerca sul Cancro – AIRC IG 2021 ID 25656. L.C., M.D.V. and F. Pisanello acknowledge funding from the Project 'RAISE (Robotics and AI for Socio-economic Empowerment)' (code ECS00000035) funded by European Union – NextGenerationEU PNRR MUR – M4C2 – Investimento 1.5 – Avviso 'Ecosistemi dell’Innovazione' CUP J33C22001220001. A.B. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement (101106602).

Author information

Authors and Affiliations

Authors

Contributions

F. Pisano and M.M.M. are co-first authors. M.S.A., E.C. M.K. and M.P. contributed equally and are listed in alphabetical order. F.G., F.D.A., M.D.V., L.M.P., M.V. and F. Pisanello jointly supervised the work and are co-last authors on this work. F. Pisano, M.P., M.G., A.B., F.T., F.D.A., M.D.V. and F. Pisanello developed the bench-top Raman system. M.P., M.S.A., F.T., F. Pisano and F. Pisanello developed the portable Raman system. M.M.-M., M.V., T.J.P. and L.M.P. tested the portable system. L.S. developed the tapered optical fiber for the Raman application. M.S.A., M.P. and F. Pisano performed the ex vivo experiments. M.M.-M., P.B. and M.V. developed the melanoma brain metastasis model and performed the in vivo experiments. E.C., T.J.P. and L.M.P. developed the traumatic brain injury model and carried out the immunohistochemistry. T.J.P., E.C., M.S.A. and L.M.P. performed the in vivo traumatic brain injury experiments and collected Raman data. F. Pisano, M.S.A., M.P., M.B., A.B., L.C., F.G. and F. Pisanello developed and performed the data analysis. M.K. developed and performed the deep learning network and analysis. M.B., M.G. and F. Pisano developed and performed the numerical simulations. F. Pisano and A.B. fabricated the micro-structured probes and performed the experiments. F.G. developed and performed the principal component analysis. F. Pisano, F.D.A., M.D.V., L.M.P., M.V. and F. Pisanello conceived the application of vibration fiber photometry in deep brain regions. F. Pisano and F. Pisanello conceptualized the work with contributions from all authors. F. Pisano drafted the manuscript and prepared the figures. All of the authors edited the manuscript.

Corresponding authors

Correspondence to Filippo Pisano or Ferruccio Pisanello.

Ethics declarations

Competing interests

L.S., M.D.V. and F. Pisanello are founders and hold private equity in Optogenix, a company that develops, produces and sells technologies to deliver light into the brain. L.S. and M.P. are employed by Optogenix. F. Pisano has been employed by Optogenix. Products of Optogenix have been used in this research. M.V. receives research funds from AstraZeneca. All other authors have no competing interests.

Peer review

Peer review information

Nature Methods thanks Hyeon Jeong Lee, Wei Min, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available. Primary Handling Editor: Nina Vogt, in collaboration with the Nature Methods team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Histology and reconstruction of fiber tracks.

a, Comparison of histology and PCA prediction for melanoma brain metastasis in ex vivo brain. Histological classification is overlaid with histological images for healthy tissue (green) and tissue with metastatic cells (red) within the collection area of the probe. Similarly, PCA classification in cluster 1, associated with healthy tissue (cyan), and cluster 2, associated with cancer (magenta),in the fingerprint (FP) (filled circles) and high-wavenumber (HW) (empty circles) ranges. b, Images of the fiber track position after in vivo experiments generating the spectra shown as orange dots in the PCA clusters in Fig. 2n. The images are acquired in fixed brain slices. The fiber track, pointed by red arrows, narrowly misses the brain metastasis. The image on the left was acquired on a brightfield fluorescence microscope; the image on the right was obtained by processing the left image with a high-pass filter to highlight the fiber track.

Extended Data Fig. 2 Supplementary data for ratiometric analysis.

a, Example of the raw Raman spectra used for ratiometric analysis acquired in metastatic tissue (magenta) and in a contralateral position in healthy tissue (cyan). b Derivative of Raman spectra for cancer free (cyan) and cancer invade (magenta) regions in the high-wavenumber (HW) range. For display reasons, the plot shows 1 measurement out of 5 for every implant position.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pisano, F., Masmudi-Martín, M., Andriani, M.S. et al. Vibrational fiber photometry: label-free and reporter-free minimally invasive Raman spectroscopy deep in the mouse brain. Nat Methods 22, 371–379 (2025). https://doi.org/10.1038/s41592-024-02557-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41592-024-02557-3

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer