Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deep learning-assisted analysis of single-particle tracking for automated correlation between diffusion and function

Abstract

Subcellular diffusion in living systems reflects cellular processes and interactions. Recent advances in optical microscopy allow the tracking of this nanoscale diffusion of individual objects with unprecedented precision. However, the agnostic and automated extraction of functional information from the diffusion of molecules and organelles within the subcellular environment is labor intensive and poses a significant challenge. Here we introduce DeepSPT, a deep learning framework integrated in an analysis software, to interpret the diffusional two- or three-dimensional temporal behavior of objects in a rapid and efficient manner, agnostically. Demonstrating its versatility, we have applied DeepSPT to automated mapping of the early events of viral infections, identifying endosomal organelles, clathrin-coated pits and vesicles among others with F1 scores of 81%, 82% and 95%, respectively, and within seconds instead of weeks. The fact that DeepSPT effectively extracts biological information from diffusion alone illustrates that besides structure, motion encodes function at the molecular and subcellular level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DeepSPT, an agnostic, automated approach for extraction of time-dependent behavior in dynamic systems.
Fig. 2: Evaluation of DeepSPT’s temporal behavior segmentation.
Fig. 3: Rapid and precise classification of rotavirus uncoating by DeepSPT based exclusively on diffusional behavior.
Fig. 4: Prediction of endosomal identity and AP2 cellular localization based exclusively on temporal diffusional behavior.

Similar content being viewed by others

Data availability

All data are available via the University of Copenhagen repository at https://erda.ku.dk/archives/804ea1ea88f340b79ada3e57141a6d6e/published-archive.html (ref. 67). All biological materials have no restrictions and are available upon reasonable request. We refer to the original publications for the additional experimental data used in this work: refs. 10,26,68.

Code availability

A minimal repository of code is available at https://erda.ku.dk/archives/752e4b0695c0dd16ec3c1a130f6ac70b/published-archive.html (ref. 69). The repository of code and models is available at https://erda.ku.dk/archives/4c5adaaacc5c867f6450bcf89ec55a45/published-archive.html (ref. 70). Both are under a CC BY-NC-ND 4.0 DEED license. In addition, upon publication, the code will also be freely available on GitHub.

References

  1. Cocucci, E., Aguet, F., Boulant, S. & Kirchhausen, T. The first five seconds in the life of a clathrin-coated pit. Cell 150, 495–507 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Johnson, C., Exell, J., Lin, Y., Aguilar, J. & Welsher, K. D. Capturing the start point of the virus-cell interaction with high-speed 3D single-virus tracking. Nat. Methods 19, 1642–1652 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu, T.-L. et al. Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms. Science 360, eaaq1392 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Thomsen, R. P. et al. A large size-selective DNA nanopore with sensing applications. Nat. Commun. 10, 5655 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aguet, F. et al. Membrane dynamics of dividing cells imaged by lattice light-sheet microscopy. Mol. Biol. Cell 27, 3418–3435 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moses, M. E. et al. Single-molecule study of Thermomyces lanuginosus lipase in a detergency application system reveals diffusion pattern remodeling by surfactants and calcium. ACS Appl. Mater. Interfaces 13, 33704–33712 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Jensen, S. B. et al. Biased cytochrome P450-mediated metabolism via small-molecule ligands binding P450 oxidoreductase. Nat. Commun. 12, 2260 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gabriele, M. et al. Dynamics of CTCF- and cohesin-mediated chromatin looping revealed by live-cell imaging. Science 376, 496–501 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jaqaman, K. et al. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5, 695–702 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wan, F. et al. Ultrasmall TPGS-PLGA hybrid nanoparticles for site-specific delivery of antibiotics into Pseudomonas aeruginosa biofilms in lungs. ACS Appl. Mater. Interfaces 12, 380–389 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Gal, N., Lechtman-Goldstein, D. & Weihs, D. Particle tracking in living cells: a review of the mean square displacement method and beyond. Rheol. Acta 52, 425–443 (2013).

    Article  CAS  Google Scholar 

  12. Arcizet, D., Meier, B., Sackmann, E., Rädler, J. O. & Heinrich, D. Temporal analysis of active and passive transport in living cells. Phys. Rev. Lett. 101, 248103 (2008).

    Article  PubMed  Google Scholar 

  13. Pinholt, H. D., Bohr, S. S.-R., Iversen, J. F., Boomsma, W. & Hatzakis, N. S. Single-particle diffusional fingerprinting: a machine-learning framework for quantitative analysis of heterogeneous diffusion. Proc. Natl Acad. Sci. USA 118, e2104624118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kowalek, P., Loch-Olszewska, H. & Szwabiński, J. Classification of diffusion modes in single-particle tracking data: feature-based versus deep-learning approach. Phys. Rev. E 100, 032410 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Benning, N. A. et al. Dimensional reduction for single-molecule imaging of DNA and nucleosome condensation by polyamines, HP1α and Ki-67. J. Phys. Chem. B 127, 1922–1931 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vega, A. R., Freeman, S. A., Grinstein, S. & Jaqaman, K. Multistep track segmentation and motion classification for transient mobility analysis. Biophys. J. 114, 1018–1025 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Monnier, N. et al. Inferring transient particle transport dynamics in live cells. Nat. Methods 12, 838–840 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Persson, F., Lindén, M., Unoson, C. & Elf, J. Extracting intracellular diffusive states and transition rates from single-molecule tracking data. Nat. Methods 10, 265–269 (2013).

    Article  PubMed  Google Scholar 

  19. Chen, Z., Geffroy, L. & Biteen, J. S. NOBIAS: analyzing anomalous diffusion in single-molecule tracks with nonparametric Bayesian inference. Front. Bioinform. 1, 742073 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Arts, M., Smal, I., Paul, M. W., Wyman, C. & Meijering, E. Particle mobility analysis using deep learning and the moment scaling spectrum. Sci. Rep. 9, 17160 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vink, J. N. A., Brouns, S. J. J. & Hohlbein, J. Extracting transition rates in particle tracking using analytical diffusion distribution analysis. Biophys. J. 119, 1970–1983 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Martens, K. J. A. et al. Visualisation of dCas9 target search in vivo using an open-microscopy framework. Nat. Commun. 10, 3552 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Karslake, J. D. et al. SMAUG: analyzing single-molecule tracks with nonparametric Bayesian statistics. Methods 193, 16–26 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Simon, F., Tinevez, J.-Y. & van Teeffelen, S. ExTrack characterizes transition kinetics and diffusion in noisy single-particle tracks. J. Cell Biol. 222, e202208059 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Momboisse, F. et al. Tracking receptor motions at the plasma membrane reveals distinct effects of ligands on CCR5 dynamics depending on its dimerization status. eLife 11, e76281 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hansen, A. S. et al. Robust model-based analysis of single-particle tracking experiments with Spot-On. eLife 7, e33125 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Martens, K. J. A., Turkowyd, B., Hohlbein, J. & Endesfelder, U. Temporal analysis of relative distances (TARDIS) is a robust, parameter-free alternative to single-particle tracking. Nat. Methods https://doi.org/10.1038/s41592-023-02149-7 (2024).

    Article  PubMed  Google Scholar 

  28. Muñoz-Gil, G. et al. Objective comparison of methods to decode anomalous diffusion. Nat. Commun. 12, 6253 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  29. You, B. & Yang, G. Attention-based LSTM for motion switching detection of particles in living cells. In 2021 International Joint Conference on Neural Networks (IJCNN) 1–6 (IEEE, 2021); https://doi.org/10.1109/IJCNN52387.2021.9533629

  30. Dosset, P. et al. Automatic detection of diffusion modes within biological membranes using back-propagation neural network. BMC Bioinformatics 17, 197 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wagner, T., Kroll, A., Haramagatti, C. R., Lipinski, H.-G. & Wiemann, M. Classification and segmentation of nanoparticle diffusion trajectories in cellular micro environments. PLoS ONE 12, e0170165 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Granik, N. et al. Single-particle diffusion characterization by deep learning. Biophys. J. 117, 185–192 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Simon, F., Weiss, L. E. & van Teeffelen, S. A guide to single-particle tracking. Nat. Rev. Methods Prim. 4, 66 (2024).

    Article  CAS  Google Scholar 

  34. Qu, X. et al. Semantic segmentation of anomalous diffusion using deep convolutional networks. Phys. Rev. Res. 6, 013054 (2024).

    Article  CAS  Google Scholar 

  35. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Weigert, M. et al. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. Methods 15, 1090–1097 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Thomsen, J. et al. DeepFRET, a software for rapid and automated single-molecule FRET data classification using deep learning. eLife 9, e60404 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Malle, M. G. et al. Single-particle combinatorial multiplexed liposome fusion mediated by DNA. Nat. Chem. 14, 558–565 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Levet, F. et al. SR-Tesseler: a method to segment and quantify localization-based super-resolution microscopy data. Nat. Methods 12, 1065–1071 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Kim, H. K. et al. SpCas9 activity prediction by DeepSpCas9, a deep learning-based model with high generalization performance. Sci. Adv. 5, eaax9249 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wong, F. et al. Discovery of a structural class of antibiotics with explainable deep learning. Nature 626, 177–185 (2024).

    Article  CAS  PubMed  Google Scholar 

  42. Dunn, K. W., Kamocka, M. M. & McDonald, J. H. A practical guide to evaluating colocalization in biological microscopy. Am. J. Physiol., Cell Physiol. 300, C723–C742 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Merino Urteaga, R. & Ha, T. Mind your tag in single-molecule measurements. Cell Rep. Methods 3, 100623 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yin, X.-X., Sun, L., Fu, Y., Lu, R. & Zhang, Y. U-Net-based medical image segmentation. J. Healthc. Eng. 2022, 4189781 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ruthardt, N., Lamb, D. C. & Bräuchle, C. Single-particle tracking as a quantitative microscopy-based approach to unravel cell entry mechanisms of viruses and pharmaceutical nanoparticles. Mol. Ther. 19, 1199–1211 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guo, C., Pleiss, G., Sun, Y. & Weinberger, K. Q. On calibration of modern neural networks. In Proc. 4th International Conference on Machine Learning 1321–1330 (JMLR, 2017).

  47. Michalet, X. Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium. Phys. Rev. E 82, 041914 (2010).

    Article  Google Scholar 

  48. Slator, P. J., Cairo, C. W. & Burroughs, N. J. Detection of diffusion heterogeneity in single particle tracking trajectories using a hidden Markov model with measurement noise propagation. PLoS ONE 10, e0140759 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Abdelhakim, A. H. et al. Structural correlates of rotavirus cell entry. PLoS Pathog. 10, e1004355 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Salgado, E. N., Garcia Rodriguez, B., Narayanaswamy, N., Krishnan, Y. & Harrison, S. C. Visualization of calcium ion loss from rotavirus during cell entry. J. Virol. 92, e01327-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Aoki, S. T. et al. Cross-linking of rotavirus outer capsid protein VP7 by antibodies or disulfides inhibits viral entry. J. Virol. 85, 10509–10517 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rink, J., Ghigo, E., Kalaidzidis, Y. & Zerial, M. Rab conversion as a mechanism of progression from early to late endosomes. Cell 122, 735–749 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Piper, R. C. & Katzmann, D. J. Biogenesis and function of multivesicular bodies. Annu. Rev. Cell Dev. Biol. 23, 519–547 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Collinet, C. et al. Systems survey of endocytosis by multiparametric image analysis. Nature 464, 243–249 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Cocucci, E., Gaudin, R. & Kirchhausen, T. Dynamin recruitment and membrane scission at the neck of a clathrin-coated pit. Mol. Biol. Cell 25, 3595–3609 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Allan, D., Caswell, T., Keim, N. & van der Wel, C. Trackpy: Trackpy v0.3.2. Zenodo https://doi.org/10.5281/zenodo.60550 (2016).

  57. Mizrak, A. et al. Single-molecule analysis of protein targeting from the endoplasmic reticulum to lipid droplets. Preprint at bioRxiv https://doi.org/10.1101/2024.08.27.610018 (2024).

  58. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention (MICCAI) Vol. 9351 (eds Navab, N., Hornegger, J., Wells, W. M. & Frangi, A. F.) 234–241 (Springer, 2015).

  60. Akiba, T., Sano, S., Yanase, T., Ohta, T. & Koyama, M. Optuna: a next-generation hyperparameter optimization framework. In Proc. 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (eds Teredesai, V. K. et al.) 2623–2631 (ACM Press, 2019); https://doi.org/10.1145/3292500.3330701

  61. Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  62. Chen, B.-C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kang, Y.-L. et al. Inhibition of PIKfyve kinase prevents infection by Zaire ebolavirus and SARS-CoV-2. Proc. Natl Acad. Sci. USA 117, 20803–20813 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bohr, F. et al. Enhanced hexamerization of insulin via assembly pathway rerouting revealed by single particle studies. Commun. Biol. 6, 178 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Østergaard, M., Mishra, N. K. & Jensen, K. J. The ABC of insulin: the organic chemistry of a small protein. Chem. Eur. J. 26, 8341–8357 (2020).

    Article  PubMed  Google Scholar 

  66. He, K. et al. Dynamics of phosphoinositide conversion in clathrin-mediated endocytic traffic. Nature 552, 410–414 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kæstel-Hansen, J. DeepSPT data and models. University of Copenhagen https://doi.org/10.17894/ucph.75da99a5-f7f1-44e7-bb6e-3fcc97bf0a15 (2024).

  68. Bohr, S. S.-R. et al. Direct observation of Thermomyces lanuginosus lipase diffusional states by single particle tracking and their remodeling by mutations and inhibition. Sci. Rep. 9, 16169 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kæstel-Hansen, J. DeepSPT code. University of Copenhagen https://doi.org/10.17894/ucph.927973c8-6821-49c8-abae-6cd5996f1c47 (2024).

  70. Kæstel-Hansen, J. DeepSPT code and models. University of Copenhagen https://doi.org/10.17894/ucph.25800387-29f5-4815-ae49-9a9d4d063bc4 (2024).

Download references

Acknowledgements

We thank members of our laboratories for help and encouragement. We thank S. C. Harrison for the fruitful discussions on the rotavirus data interpretation. We thank N. Kumar Mishra and K. J. Jensen for discussion concerning the preparation and use of insulin for our experiments. This work was funded by the Villum Foundation by being part of BioNEC (grant 18333) to J.K.-H. and N.S.H., the Novo Nordisk foundation challenge center for Optimised Oligo escape (NNF23OC0081287) (N.S.H. PI and T.K., co-PI), the center for 4D cellular dynamics (NNF22OC0075851). N.S.H. is affiliated with The Novo Nordisk Foundation Center for Protein Research funded by a generous donation from the Novo Nordisk Foundation (grant no. NNF14CC0001). J.K.-H., A.J.N., S.V.B. and N.S.H. are members of the Integrative Structural Biology Cluster at the University of Copenhagen. VILLUM FONDEN (40516) for W.B. and N.S.H. The Novo Nordisk Foundation Center for Basic Machine Learning Research in Life Science (NNF20OC0062606) for W.B. T.K. acknowledges support from NIH Maximizing Investigators’ Research Award GM130386, NIH grant AI163019, 1R01, IONIS Pharmaceuticals. M.d.S was supported by NIH/NCI CA13202 grant to S. C. Harrison.

Author information

Authors and Affiliations

Authors

Contributions

J.K.-H., N.S.H. and T.K. wrote the paper with feedback from all the authors. J.K.-H. performed all computational work with input from T.K., W.B. and N.S.H. M.d.S. performed all rotavirus preparation. A.S., R.F.B.D.C.C. and G.S. performed LLSM imaging with the presence of J.K.-H. in the laboratory of T.K. at Harvard Medical School. A.J.N. and S.V.B. performed SDCM imaging and insulin assays and K.T. wrote the software package in the laboratory of N.S.H. at the University of Copenhagen. J.K.-H. and N.S.H. conceived the project idea. N.S.H. had the overall project management with tight interactions with T.K.

Corresponding authors

Correspondence to Tomas Kirchhausen or Nikos S. Hatzakis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Methods thanks Koen Martens and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Rita Strack, in collaboration with the Nature Methods team. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Comparison of classification accuracy of DeepSPT with benchmarks.

Comparison of classification accuracy of DeepSPT, LSTM-based model29, and rolling MSD for various number of diffusion types. a, Confusion matrices of DeepSPT predictions per frame on 2D simulated test set trajectories (N=20000 tracks), Data displayed for either 4 diffusional states, or 3 states normal, directed and confined/subdiffusive, or 2 states normal/directed, confined/subdiffusive. b, Confusion matrices of attention BiLSTM29 predictions per frame on 2D simulated test set trajectories. Data for for 4, 3, 2 diffusional states as above c, Confusion matrices of rolling MSD12,47 predictions per frame on 2D simulated test set trajectories (predicts three classes as it bases predictions on the alpha exponent in a MSD fit based on (subdiffusive alpha)<(normal alpha)<(directed alpha)) Data for for 4, 3, 2 diffusional states as above. d, DeepSPT on 3D test set trajectories when combining classes into three and two respectively.

Extended Data Fig. 2 Investigating DeepSPT’s robustness to simulation parameters for the heterogeneous diffusing test set in 3D.

Investigation of model generalizability and limitations for key simulation parameters for traces containing all 4 diffusional types at random (see Methods for test set elaboration): a, Varying ranges of diffusion coefficients (D) for simulated trajectories (varying D is equivalent to varying temporal resolution for observation of a diffusing particle due to scale invariance of diffusion). b, step length to localization error ratio, i.e ratio of contribution to displacements from actual diffusion and localization error respectively where a value of 1 signifies an equal contribution and >1 signifies actual diffusion being larger. c, Duration of track. Median accuracy and mean accuracy are track-level metrics providing descriptive statistics for the distribution track-level accuracies for each test set track (N=20000). Flattened accuracy measures the accuracy for all frame-level predictions inside each trajectory pooled together.

Extended Data Fig. 3 Investigating DeepSPT’s robustness to simulation parameters for the heterogeneous diffusing test set in 2D.

Investigation of model generalizability and limitations for key simulation parameters for traces containing all 4 diffusional types at random (see Methods for test set elaboration): a, Varying ranges of diffusion coefficients (D) for simulated trajectories (varying D is equivalent to varying temporal resolution for observation of a diffusing particle due to scale invariance of diffusion). b, step length to localization error ratio, i.e ratio of contribution to displacements from actual diffusion and localization error respectively where a value of 1 signifies an equal contribution and >1 signifies actual diffusion being larger. c, Duration of track. Median accuracy and mean accuracy are track-level metrics providing descriptive statistics for the distribution track-level accuracies for each test set track (N=20000). Flattened accuracy measures the accuracy for all frame-level predictions inside each trajectory pooled together.

Extended Data Fig. 4 Evaluation of the effects of tracking errors on DeepSPT temporal segmentation.

1000 trajectories are simulated within a box of varying dimensions and tracked using Trackpy56 (see Methods). The trajectories obtained by Trackpy are analyzed using DeepSPT’s temporal segmentation module. a, Example of trajectories produced by Trackpy showing tracks with one or more linking errors (red), correct/preserved tracks (black), and tracks without linking errors but still differ from the simulated tracks (grey). b, Example of simulated ground truth tracks (colored by ID). c, The median accuracy of DeepSPT in prediction diffusional behavior per time point per track for varying simulated box dimensions, thus varying degrees of linking errors. Median accuracy refers to the median of the distribution of correctly predicted time points in each individual track. Each blue cross represents an independent set of 1000 trajectories. Three sets are simulated per simulated box dimension with black dots and error bars representing the mean and standard deviations across each of the three sets. Red line represents the median accuracy of DeepSPT directly on simulated trajectories. d, Zoom-in, showing the dashed grey box in (c). e, The median accuracy of DeepSPT in prediction diffusional behavior per time point per track versus various degrees of preserved tracks, that is number of tracks perfectly tracked. As in (c) each blue cross represents an independent set of 1000 trajectories with three sets per simulated box dimension with black dots and error bars representing the mean and standard deviations across each of the three sets. Red line represents the median accuracy of DeepSPT directly on simulated trajectories. f, Zoom-in, showing the dashed grey box in (e).

Extended Data Fig. 5 Evaluation of DeepSPT and two AnDi challenge models on AnDi challenge task 3.

Confusion matrix for all individual time point predictions within the 20000 2D (a, c, e) and 3D (b, d) test set trajectories simulated using the 2021 AnDi challenge task 3 open-source framework totalling 4 million predictions. See Muñoz-gil et al.28 for further test set specification. Diagonal entries are correct predictions and off-diagonal indicates confused classes. Each entry reports the percentage of predictions normalized to the actual number of true labels in the given class. a, Confusion matrix for DeepSPT on 2D trajectories. b, Confusion matrix for DeepSPT on 3D trajectories. c, Confusion matrix for Method E on 2D trajectories. d, Confusion matrix for Method E on 3D trajectories. e, Confusion matrix for Method J on 2D trajectories.

Extended Data Fig. 6 Evaluation DeepSPT and two AnDi challenge models on traces with multiple changes between diffusion behaviors from the AnDi challenge.

Confusion matrix for all individual time point predictions within the 20000 2D (a, c, e) and 3D (b, d) test set trajectories simulated by combining the anomalous diffusion behaviors from the 2021 AnDi challenge open-source framework28 into heterogeneous trajectories sampling multiple diffusional behaviors with multiple change points totalling 4 million predictions. Diagonal entries are correct predictions and off-diagonal indicates confused classes. Each entry reports the percentage of predictions normalized to the actual number of true labels in the given class. a, Confusion matrix for DeepSPT on 2D trajectories. b, Confusion matrix for DeepSPT on 3D trajectories. c, Confusion matrix for Method E on 2D trajectories. d, Confusion matrix for Method E on 3D trajectories. e, Confusion matrix for Method J on 2D trajectories.

Extended Data Fig. 7 Temporal segmentation and changepoint prediction of simulated trajectories for DeepSPT and benchmark approaches.

a-e, Predicted changepoints (CP) versus true changepoints. Trajectories are constructed by combining two populations with overlapping diffusional properties into individual tracks with one changepoint (see Methods). Black line represents perfect classification. a, HMM-bayes17, 1556 data points compared to 5000 for other approaches due to computational time restraints as HMM-bayes requires several minutes per track. b, Rolling MSD. c, Original diffusional fingerprinting (Pinholt et al.13) d, Method E from the 2021 AnDi Challenge. e, DeepSPT. f, Table of classification metrics for the temporal segmentation of trajectory timepoints as post- and pre-uncoating and changepoint prediction. Median accuracy measures the median accuracy per trajectory (N=100). F1-score measures the F1-score of all individual timepoint predictions. Median frame error measures the median of absolute distances between predicted and true changepoints across all trajectories. Mean frame error measures the mean of absolute distances between predicted and true changepoints across all trajectories. Mean squared error measures the mean of the second norm distances between predicted and true changepoints across all trajectories. R2 measures the coefficient of determination.

Extended Data Fig. 8 Temporal segmentation and changepoint prediction of 3D lattice light sheet rotavirus trajectory timepoints as post- and pre-uncoating for DeepSPT and benchmark approaches.

a-e, Predicted changepoints (CP) versus true changepoints. Black line represents perfect classification. a, HMM-bayes17 b, Rolling MSD. c, Original diffusional fingerprinting (Pinholt et al.13) d, Method E from the 2021 AnDi Challenge. e, DeepSPT. f, Table of classification metrics for the temporal segmentation of trajectory timepoints as post- and pre-uncoating and changepoint prediction. Median accuracy measures the median accuracy per trajectory per time point (N=100), that is all time points before a changepoint is defined as predicted ‘before’, while time points after are defined as predicted ‘after’. These predictions are compared to the ground truth. F1-score measures the F1-score of all individual time point predictions as for median accuracy. Median frame error measures the median of absolute distances between predicted and true changepoints across all trajectories. Mean frame error measures the mean of absolute distances between predicted and true changepoints across all trajectories. Mean squared error measures the mean of the second norm distances between predicted and true changepoints across all trajectories. R2 measures the coefficient of determination.

Extended Data Fig. 9 Benchmark EEA1- versus NPC1- positive endosome predictions.

Confusion matrices displaying classification performance on outputting NPC1 and EAA1 identity based solely on diffusion. a, DeepSPT. b, Original diffusional fingerprinting (Pinholt et al.13). c, Method E of the ANDI challenge. d, Utilizing the anomalous diffusion exponent (alpha) and diffusion coefficient. e, Only variations in diffusion coefficient. f, Only variations in alpha.

Extended Data Fig. 10 Benchmark dorsal versus ventral AP2 predictions.

Confusion matrices displaying classification performance of outputting whether AP2 is dorsal or ventral based solely on diffusion. a, DeepSPT. b, Original diffusional fingerprinting (Pinholt et al.13). c, Method E of the ANDI challenge. d, Utilizing the anomalous diffusion exponent (alpha) and diffusion coefficient. e, Only variations in diffusion coefficient. f, Only variations in alpha.

Supplementary information

Supplementary Information

Supplementary Figs. 1–26, materials and Tables 1–4.

Reporting Summary

Peer Review File

Supplementary Video 1

Single rotavirus tracking in 3D by LLSM observing viral uncoating along with DeepSPT identification of the event in split channel view.

Supplementary Video 2

Single rotavirus tracking in 3D by LLSM observing viral uncoating along with DeepSPT identification of the event in merged channel view.

Supplementary Video 3

Single-particle trajectories of NPC1-positive endosomes in 3D in live cell by LLSM.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kæstel-Hansen, J., de Sautu, M., Saminathan, A. et al. Deep learning-assisted analysis of single-particle tracking for automated correlation between diffusion and function. Nat Methods 22, 1091–1100 (2025). https://doi.org/10.1038/s41592-025-02665-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41592-025-02665-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing