Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A palette of bridged bicycle-strengthened fluorophores

Abstract

Organic fluorophores are the keystone of advanced biological imaging. The vast chemical space of fluorophores has been extensively explored in search of molecules with ideal properties. However, within the current molecular constraints, there appears to be a trade-off between high brightness, robust photostability, and tunable biochemical properties. Herein we report a general strategy to systematically boost the performance of donor-acceptor-type fluorophores, such as rhodamines, by leveraging SO2 and O-substituted azabicyclo[3.2.1] octane auxochromes. These bicyclic heterocycles give rise to a collection of ‘bridged’ dyes (BD) spanning the ultraviolet and visible range with top-notch quantum efficiencies, enhanced water solubility, and tunable cell-permeability. Notably, these azabicyclic fluorophores showed remarkable photostability compared to their tetramethyl or azetidine analogs while being completely resistant to oxidative photoblueing. Functionalized BD dyes are tailored for applications in single-molecule imaging, super-resolution imaging (STED and SIM) in fixed or live mammalian and plant cells, and live zebrafish imaging and chemogenetic voltage imaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development of fluorophores with bridged bicyclic auxochromes.
Fig. 2: Photostability and photoblueing properties of BD and benchmarking dyes.
Fig. 3: BD derivatives for antibody bioconjugation and immunofluorescence imaging.
Fig. 4: BD derivatives are exceptional HaloTag ligands for the labeling and imaging of cellular targets.
Fig. 5: BDHTLs are versatile tools for general imaging in cells, plants, and animals.

Similar content being viewed by others

Data availability

All data associated with this study are presented in the main text or Supplementary Information. The raw high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy data are provided in the Supplementary Information. The structure of HaloTag7 bound to BD626HTL has been deposited in the Protein Data Bank (PDB 6Y7B).

The raw imaging data for Figures 4d, and 5c,f,h are provided as Supplementary Videos 14. All chemical probes reported in this work are available from the corresponding author upon reasonable request. Selected BDHTL dyes are commercially available from Genvivo Biotech and Spirochrome. Source data are provided with this paper.

References

  1. Sahl, S. J., Hell, S. W. & Jakobs, S. Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell Biol. 18, 685–701 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Liu, Z., Lavis, LukeD. & Betzig, E. Imaging live-cell dynamics and structure at the single-molecule level. Mol. Cell. 58, 644–659 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Sigal, Y. M., Zhou, R. & Zhuang, X. Visualizing and discovering cellular structures with super-resolution microscopy. Science 361, 880–887 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schermelleh, L. et al. Super-resolution microscopy demystified. Nat. Cell Biol. 21, 72–84 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, L., Frei, M. S., Salim, A. & Johnsson, K. Small-molecule fluorescent probes for live-cell super-resolution microscopy. J. Am. Chem. Soc. 141, 2770–2781 (2018).

    Article  Google Scholar 

  6. Schnermann, M. J. & Lavis, L. D. Rejuvenating old fluorophores with new chemistry. Curr. Opin. Chem. Biol. 75, 102335 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Samanta, S. et al. Xanthene, cyanine, oxazine and BODIPY: the four pillars of the fluorophore empire for super-resolution bioimaging. Chem. Soc. Rev. 52, 7197–7261 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, Y., Ling, J., Liu, T. & Chen, Z. Lumos maxima—how robust fluorophores resist photobleaching? Curr. Opin. Chem. Biol. 79, 102439 (2024).

    Article  CAS  PubMed  Google Scholar 

  9. Sletten, E. M. & Bertozzi, C. R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. 48, 6974–6998 (2009).

    Article  CAS  Google Scholar 

  10. Koniev, O. & Wagner, A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem. Soc. Rev. 44, 5495–5551 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Xue, L., Karpenko, I. A., Hiblot, J. & Johnsson, K. Imaging and manipulating proteins in live cells through covalent labeling. Nat. Chem. Biol. 11, 917–923 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Saimi, D. & Chen, Z. Chemical tags and beyond: live‐cell protein labeling technologies for modern optical imaging. Smart Mol. 1, e20230002 (2023).

    Article  Google Scholar 

  13. Giepmans, B. N. G., Adams, S. R., Ellisman, M. H. & Tsien, R. Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Rodriguez, E. A. et al. The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem. Sci. 42, 111–129 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Grimm, J. B. & Lavis, L. D. Caveat fluorophore: an insiders’ guide to small-molecule fluorescent labels. Nat. Methods 19, 149–158 (2021).

    Article  PubMed  Google Scholar 

  16. Panchuk–Voloshina, Nataliya et al. Alexa Dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J. Histochem. Cytochem. 47, 1179–1188 (1999).

    Article  PubMed  Google Scholar 

  17. Grabowski, Z. R., Rotkiewicz, K. & Rettig, W. Structural changes accompanying intramolecular electron transfer: Focus on twisted intramolecular charge-transfer states and structures. Chem. Rev. 103, 3899–4031 (2003).

    Article  PubMed  Google Scholar 

  18. Wang, C. et al. Twisted intramolecular charge transfer (TICT) and twists beyond TICT: from mechanisms to rational designs of bright and sensitive fluorophores. Chem. Soc. Rev. 50, 12656–12678 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Song, X. Z., Johnson, A. & Foley, J. 7-Azabicyclo[2.2.1]heptane as a unique and effective dialkylamino auxochrome moiety: demonstration in a fluorescent rhodamine dye. J. Am. Chem. Soc. 130, 17652–17653 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Grimm, J. B. et al. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12, 244–250 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grimm, J. B. et al. A general method to fine-tune fluorophores for live-cell and in vivo imaging. Nat. Methods 14, 987–994 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grimm, J. B. et al. Optimized red-absorbing dyes for imaging and sensing. J. Am. Chem. Soc. 145, 23000–23013 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Los, G. V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Helmerich, D. A., Beliu, G., Matikonda, S. S., Schnermann, M. J. & Sauer, M. Photoblueing of organic dyes can cause artifacts in super-resolution microscopy. Nat. Methods 18, 253–257 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dasgupta, A. et al. Effects and avoidance of photoconversion-induced artifacts in confocal and STED microscopy. Nat. Methods 21, 1171–1174 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grimm, J. B. et al. A general method to improve fluorophores using deuterated auxochromes. JACS Au 1, 690–696 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Roßmann, K. et al. N-Methyl deuterated rhodamines for protein labelling in sensitive fluorescence microscopy. Chem. Sci. 13, 8605–8617 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ye, Z. et al. Quaternary piperazine-substituted rhodamines with enhanced brightness for super-resolution imaging. J. Am. Chem. Soc. 141, 14491–14495 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Lv, X., Gao, C., Han, T., Shi, H. & Guo, W. Improving the quantum yields of fluorophores by inhibiting twisted intramolecular charge transfer using electron-withdrawing group-functionalized piperidine auxochromes. Chem. Commun. 56, 715–718 (2020).

    Article  CAS  Google Scholar 

  31. Butkevich, A. N., Bossi, M. L., Lukinavičius, G. & Hell, S. W. Triarylmethane fluorophores resistant to oxidative photobluing. J. Am. Chem. Soc. 141, 981–989 (2018).

    Article  PubMed Central  Google Scholar 

  32. Wang, L. G. et al. OregonFluor enables quantitative intracellular paired agent imaging to assess drug target availability in live cells and tissues. Nat. Chem. 15, 729–739 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Corrie, J. E. T. & Munasinghe, V. R. N. Substituent effects on the apparent pK of the reversible open-to-closed transition of sultams derived from sulforhodamine dyes. Dyes Pigm. 79, 76–82 (2008).

    Article  CAS  Google Scholar 

  34. Grimm, J. B. & Lavis, L. D. Synthesis of rhodamines from fluoresceins using Pd-catalyzed C-N cross-coupling. Org. Lett. 13, 6354–6357 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, J. et al. Red- and far-red-emitting zinc probes with minimal phototoxicity for multiplexed recording of orchestrated insulin secretion. Angew. Chem. Int. Ed. 60, 25846–25855 (2021).

    Article  CAS  Google Scholar 

  36. Walker, D. & Rogier, D. Preparation of novel bridged bicyclic thiomorpholines as potentially useful building blocks in medicinal chemistry. Synthesis 45, 2966–2970 (2013).

    Article  CAS  Google Scholar 

  37. Köbrich, G. Bredt compounds and the Bredt rule. Angew. Chem. Int. Ed. 12, 464–473 (2003).

    Article  Google Scholar 

  38. Wang, C. et al. Quantitative design of bright fluorophores and AIEgens by the accurate prediction of twisted intramolecular charge transfer (TICT). Angew. Chem. Int. Ed. 59, 10160–10172 (2020).

    Article  CAS  Google Scholar 

  39. Wang, B., Chai, X., Zhu, W., Wang, T. & Wu, Q. A general approach to spirolactonized Si-rhodamines. Chem. Commun. 50, 14374–14377 (2014).

    Article  CAS  Google Scholar 

  40. Kim, D.-H. et al. Blue-conversion of organic dyes produces artifacts in multicolor fluorescence imaging. Chem. Sci. 12, 8660–8667 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mujumdar, R. B., Ernst, L. A., Mujumdar, S. R., Lewis, C. J. & Waggoner, A. S. Cyanine dye labeling reagents - sulfoindocyanine succinimidyl esters. Bioconjugate Chem. 4, 105–111 (1993).

    Article  CAS  Google Scholar 

  42. Wurm, C. A. et al. Novel red fluorophores with superior performance in STED microscopy. Opt. Nanoscopy 1, 1–7 (2012).

    Article  Google Scholar 

  43. Lukinavičius, G. et al. A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat. Chem. 5, 132–139 (2013).

    Article  PubMed  Google Scholar 

  44. Butkevich, A. N. et al. Fluorescent rhodamines and fluorogenic carbopyronines for super‐resolution STED microscopy in living cells. Angew. Chem. Int. Ed. 55, 3290–3294 (2016).

    Article  CAS  Google Scholar 

  45. Wilhelm, J. et al. Kinetic and structural characterization of the self-labeling protein tags HaloTag7, SNAP-tag, and CLIP-tag. Biochemistry 60, 2560–2575 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Abdelfattah, A. S. et al. Bright and photostable chemigenetic indicators for extended in vivo voltage imaging. Science 365, 699–704 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Huppertz, M.-C. et al. Recording physiological history of cells with chemical labeling. Science 383, 890–897 (2024).

    Article  CAS  PubMed  Google Scholar 

  48. Tokunaga, M., Imamoto, N. & Sakata-Sogawa, K. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat. Methods 5, 159–161 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Abdelfattah, A. S. et al. Sensitivity optimization of a rhodopsin-based fluorescent voltage indicator. Neuron 111, 1547–1563 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Napier, R. M., Fowke, L. C., Hawes, C., Lewis, M. & Pelham, H. R. Immunological evidence that plants use both HDEL and KDEL for targeting proteins to the endoplasmic reticulum. J. Cell Sci. 102, 261–271 (1992).

    Article  CAS  PubMed  Google Scholar 

  51. Denecke, J., De Rycke, R. & Botterman, J. Plant and mammalian sorting signals for protein retention in the endoplasmic reticulum contain a conserved epitope. EMBO J. 11, 2345–2355 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lv, X. et al. Membrane microdomains and the cytoskeleton constrain AtHIR1 dynamics and facilitate the formation of an AtHIR1‐associated immune complex. Plant J. 90, 3–16 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Hara, D. et al. Silinanyl rhodamines and silinanyl fluoresceins for super-resolution microscopy. J. Phys. Chem. B 125, 8703–8711 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Lu, X. et al. Super-photostability and super-brightness of EC5 dyes for super-resolution microscopy in the deep near-infrared spectral region. Chem. Mater. 36, 949–958 (2024).

    Article  CAS  Google Scholar 

  55. Grimm, J. B. et al. A general method to optimize and functionalize red-shifted rhodamine dyes. Nat. Methods 17, 815–821 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, L. et al. A general strategy to develop cell permeable and fluorogenic probes for multicolour nanoscopy. Nat. Chem. 12, 165–172 (2019).

    Article  PubMed  Google Scholar 

  57. Liu, T. et al. Gentle rhodamines for live-cell fluorescence microscopy. ACS Cent. Sci. 10, 1933–1944 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Grimm, J. et al. A general method to fine-tune fluorophores for live-cell and in vivo imaging. Nat. Methods 14, 987–994 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Adamo, C. & Baorne, V. Toward. Reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).

    Article  CAS  Google Scholar 

  60. Stephens, P. J. et al. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994).

    Article  CAS  Google Scholar 

  61. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  62. Krishnan, R. et al. Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–654 (1980).

    Article  CAS  Google Scholar 

  63. Clark, T., Chandrasekhar, J., Spitznagel, G. W. & Schleyer, P. V. R. Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li–F. J. Comput. Chem. 4, 294–301 (1983).

    Article  CAS  Google Scholar 

  64. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lebedev, A. A. et al. JLigand: a graphical tool for the CCP4 template-restraint library. Acta Crystallogr. D 68, 431–440 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D 67, 235–242 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  69. Emsley, P., Lohkamp, B., Scott, W. G., & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D 68, 352–367 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hansen, A. S., Pustova, I., Cattoglio, C., Tjian, R. & Darzacq, X. CTCF and cohesin regulate chromatin loop stability with distinct dynamics. eLife 6, e25776 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sergé, A., Bertaux, N., Rigneault, H. & Marguet, D. Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat. Methods 5, 687–694 (2008).

    Article  PubMed  Google Scholar 

  75. Clough, S. J. in Transgenic Plants: Methods and Protocols. Methods in Molecular Biology Vol. 286 (ed. Peña, L.) 91–101 (Humana Press, 2005).

  76. Lang, C., Schulze, J., Mendel, R.-R. & Hänsch, R. HaloTag™: a new versatile reporter gene system in plant cells. J. Exp. Bot. 57, 2985–2992 (2006).

Download references

Acknowledgements

This project was supported by funds from National Key R&D Program of China (2021YFF0502904 to Z.C.; 2020YFA0509502 to W.D.), the Beijing Municipal Science & Technology Commission (project Z221100003422013 to Z.C.), the Beijing National Laboratory for Molecular Sciences (BNLMS202407 to Z.C.), and the Natural Science Foundation of China (32170566 to W.D.). We thank L. Chen at Peking University for the guidance in analyzing crystal structures. We thank J. Lin for the assistance with plant-cell imaging. We thank P. Xi for assistance with SIM imaging. We thank the Tsinghua University Branch of China National Center for Protein Sciences (Beijing) and Tsinghua University Technology Center for Protein Research for the X-ray crystallography facility support. We thank S. Fan, L. Wang, and M. Li at the X-ray crystallography platform of National Protein Science Facility, Tsinghua University, Beijing, for their technical help. We thank the Metabolic Mass Spectrometry Platform at the IMM, the analytical instrumentation center of Peking University, the NMR facility of the National Center for Protein Sciences at Peking University, and the National Center for Protein Sciences at Peking University.

Author information

Authors and Affiliations

Authors

Contributions

Z.C. conceived the study. J.Z. and P.C. performed the chemical synthesis and characterizations. J.Z. performed the photophysical tests. K.Z. solved the crystal structures of HaloTag7–BD626. J.Z., M.Z., and T.L. performed confocal and STED imaging. K.W., S.F., and X.Z. performed in vivo imaging. B.W. performed single-molecule imaging. S.Z. performed voltage imaging. H.Q. performed SIM imaging on plant cells. Y.M. performed chemical calculations. Y.S. performed photo-crosslinking experiments. Y.F. performed SIM imaging on mammalian cells. P.Z., W.D., Y.M., and Z. C. supervised the project. J.Z. and Z.C. wrote the paper.

Corresponding author

Correspondence to Zhixing Chen.

Ethics declarations

Competing interests

Z.C., J.Z., and P. C. are the inventors of a patent on the bridged-bicycle strengthened fluorophores (CN2023108090626, patent pending), whose value could be affected by this paper. The other authors declare no competing interests.

Peer review

Peer review information

Nature Methods thanks Lei Wang, Youjun Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Rita Strack, in collaboration with the Nature Methods team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 A crystal structure of BD626HTL at the HaloTag7 shows additional interactions between dye and protein.

(a)Structural comparison between HT7-CPY (cyan, PDB 6Y7B) and HT7-BD626 (yellow, PDB 9JHA); (b-c) Close-ups of the substrate binding sites. Proteins are represented as pink or gray cartoons. Fluorophores and residues are shown as sticks. A polar interaction is identified between the bridged auxochrome and Q165 and shown as dashed lines with annotated distances; (d)A overlaid comparison of CPYHTL and BD626HTL in the pocket of HT7.

Extended Data Fig. 2 BD566HTL enables time-lapse SIM imaging.

(a)Time-lapse SIM images of live COS-7 cells stably expressing TOMM20-HT7 labeled with BD566HTL (500 nM, 1 h, 37 °C, one wash), scale bar=2 μm; (b) Normalized fluorescence decay curves of samples in (a), n = 4 in 2 independent experiments; error bar show ± s.d.

Extended Data Fig. 3 BD626HTL can offer 25 z-frames for 3D reconstruction, enabling the construction of the distribution of the cytoskeleton (Cep41) throughout the entire cell.

Orthogonal views of 3D-STED images of fixed HeLa cells expressing Cpe41-HT7 labeled with BD626HTL (500 nM, 30 min, 37 °C, one wash). An area of 52.5 × 51.0 μm (xy) was recorded in 65 nm z-stacks over 25 times; scale bar= 1 μm.

Extended Data Table 1 The major advantages BriDyes bring out in the manuscript by head-to-head comparisons

Supplementary information

Supplementary Information

Supplementary Figures 1–12, Supplementary Tables 1 and 2, Supplementary Schemes 1–3, Synthesis and characterization of new compounds, NMR spectra, and Supplementary References.

Reporting Summary

Supplementary Video 1

Time-lapse single-molecule images of fixed U-2 OS cells stably expressing H2B-HaloTag7 labeled with TMRHTL, JF549HTL and BD566HTL; scale bar, 5 μm.

Supplementary Video 2

Time-lapse STED images of live HeLa cells expressing TOMM20-HaloTag7 labeled with BD626HTL, SiRHTL or JF646HTL; scale bar, 1 μm.

Supplementary Video 3

Time-lapse TIRF-SIM images of live Arabidopsis thalianas cells expressing HIR1-HaloTag7 labeled with BD626HTL or JF646HTL; scale bar, 1 μm.

Supplementary Video 4

Z-stack confocal images and 3D reconstruction of a live zebrafish expressing elavl3:H2B-HT7 and labeled with BD566HTL.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 2

Unprocessed gels.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, K., Wang, K. et al. A palette of bridged bicycle-strengthened fluorophores. Nat Methods 22, 1276–1287 (2025). https://doi.org/10.1038/s41592-025-02693-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41592-025-02693-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing