Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The mechanochemical cycle of reactive full-length human dynein 1

Abstract

Dynein-driven cargo transport has a pivotal role in diverse cellular activities, central to which is dynein’s mechanochemical cycle. Here, we performed a systematic cryo-electron microscopic investigation of the conformational landscape of full-length human dynein 1 in reaction, in various nucleotide conditions, on and off microtubules. Our approach reveals over 40 high-resolution structures, categorized into eight states, providing a dynamic and comprehensive view of dynein throughout its mechanochemical cycle. The described intermediate states reveal mechanistic insights into dynein function, including a ‘backdoor’ phosphate release model that coordinates linker straightening, how microtubule binding enhances adenosine triphosphatase activity through a two-way communication mechanism and the crosstalk mechanism between AAA1 and the regulatory AAA3 site. Our findings also lead to a revised model for the force-generating powerstroke and reveal means by which dynein exhibits unidirectional stepping. These results improve our understanding of dynein and provide a more complete model of its mechanochemical cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cryo-EM analysis of full-length human dynein 1 off and on MTs.
Fig. 2: The conformational landscape of MT-unbound dynein motor domains in reaction.
Fig. 3: The release of Pi from AAA1 through a molecular backdoor mechanism.
Fig. 4: The mechanism for two-way communication between AAA1 and the MTBD.
Fig. 5: The mechanism for ATPase stimulation by MTs and dynein’s unidirectional stepping along MTs.
Fig. 6: Model for the mechanochemical cycle of full-length human dynein 1.

Similar content being viewed by others

Data availability

Models and cryo-EM maps were deposited to the PDB and EM Data Bank as outlined below.

Dynein in ATP buffer: PDB 9BLY and EMD-44681 (phi particle dynein), PDB 9BLZ and EMD-44682 (state 1), PDB 9BM0 and EMD-44683 (state 2), PDB 9BM1 and EMD-44684 (state 3), PDB 9BM2 and EMD-44685 (state 4), PDB 9BM3 and EMD-44686 (state 5a), PDB 9BM4 and EMD-44687 (state 5b), PDB 9BM5 and EMD-44688 (state 6), PDB 9BM6 and EMD-44689 (state 7a, post 2), PDB 9BM7 and EMD-44690 (state 7b, post 2) and PDB 9BM8 and EMD-44691 (state 7c, post 2).

Dynein in ATP-Vi buffer: PDB 9BMF and EMD-44697 (state 1), PDB 9BMG and EMD-44698 (state 2) and PDB 9BMH and EMD-44699 (state 4).

Dynein in 5 mM AMPPNP buffer with 2 mM Mg2+: PDB 9BMJ and EMD-44701 (state 1), PDB 9BML and EMD-44702 (state 2), PDB 9BMM and EMD-44703 (state 4), PDB 9BMN and EMD-44704 (state 5), PDB 9BMO and EMD-44705 (state 6) and PDB 9BMP and EMD-44706 (state 7, post 2).

Dynein in 5 mM AMPPNP buffer with 5 mM Mg2+: PDB 9DH5 and EMD-46856 (state 1), PDB 9DH6 and EMD-46857 (state 2), PDB 9DH7 and EMD-46858 (state 4), PDB 9DH8 and EMD-46859 (state 5), PDB 9DH9 and EMD-46860 (state 7, post 2) and PDB 9DHA and EMD-46861 (state 7, post 1)

Dynein in ADP buffer: PDB 9BMR and EMD-44708 (state 1), PDB 9BMS and EMD-44709 (state 2), PDB 9BMT and EMD-44710 (state 5), PDB 9BMU and EMD-44711 (state 6), PDB 9BMV and EMD-44712 (state 7, post 1) and PDB 9BMW and EMD-44714 (state 7, post 2).

Dynein in apo buffer: PDB 9BMY and EMD-44715 (state 1), PDB 9BMZ and EMD-44716 (state 2), PDB 9BN0 and EMD-44717 (state 7, post 2) and PDB 9BN1 and EMD-44718 (state 8, post 1).

Dynein bound to MTs: PDB 9BMA and EMD-44693 (apo, post 1), PDB 9BMB and EMD-44694 (ADP, post 1), PDB 9BMC and EMD-44695 (ADP, post 2) and PDB 9BMD and EMD-44696 (AMPPNP, post 1).

Dynein motor domain α registry mutant in ATP buffer: PDB 9BN3 and EMD-44720 (class 1) and PDB 9BN4 and EMD-44721 (class 2).

Dynein motor domain α registry mutant in ATP-Vi buffer: PDB 9BN5 and EMD-44722 (class 1) and PDB 9BN6 and EMD-44723 (class 2).

Previously reported atomic models used in this study (for model building and structural analysis) were obtained from the PDB under accession codes 5NUG, 7K58, 7K5B, 8FD6 and 7MGM. Additional data and materials can be obtained from the corresponding authors upon request. Source data are provided with this paper.

Code availability

All codes involved in general cryo-EM data processing and MT signal subtraction are publicly available from GitHub (https://github.com/JackZhang-Lab).

References

  1. King, S. M. The dynein microtubule motor. Biochim. Biophys. Acta 1496, 60–75 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Reck-Peterson, S. L., Redwine, W. B., Vale, R. D. & Carter, A. P. The cytoplasmic dynein transport machinery and its many cargoes. Nat. Rev. Mol. Cell Biol. 19, 382–398 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Torisawa, T. & Kimura, A. The generation of dynein networks by multi-layered regulation and their implication in cell division. Front Cell Dev. Biol. 8, 22 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ricolo, D., Castro-Ribera, J. & Araujo, S. J. Cytoskeletal players in single-cell branching morphogenesis. Dev. Biol. 477, 22–34 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Klena, N. & Pigino, G.Structural biology of cilia and intraflagellar transport. Annu. Rev. Cell Dev. Biol. 38, 103–123 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. King, S. M. Axonemal dynein arms. Cold Spring Harb. Perspect. Biol. 8, a028100 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bachmann, A. & Straube, A. Kinesins in cell migration. Biochem. Soc. Trans. 43, 79–83 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Urnavicius, L. et al. Cryo-EM shows how dynactin recruits two dyneins for faster movement. Nature 554, 202–206 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grotjahn, D. A. et al. Cryo-electron tomography reveals that dynactin recruits a team of dyneins for processive motility. Nat. Struct. Mol. Biol. 25, 203–207 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, K. et al. Cryo-EM reveals how human cytoplasmic dynein is auto-inhibited and activated. Cell 169, 1303–1314 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Urnavicius, L. et al. The structure of the dynactin complex and its interaction with dynein. Science 347, 1441–1446 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McKenney, R. J., Huynh, W., Tanenbaum, M. E., Bhabha, G. & Vale, R. D. Activation of cytoplasmic dynein motility by dynactin–cargo adapter complexes. Science 345, 337–341 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chowdhury, S., Ketcham, S. A., Schroer, T. A. & Lander, G. C. Structural organization of the dynein–dynactin complex bound to microtubules. Nat. Struct. Mol. Biol. 22, 345–347 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schlager, M. A., Hoang, H. T., Urnavicius, L., Bullock, S. L. & Carter, A. P. In vitro reconstitution of a highly processive recombinant human dynein complex. EMBO J. 33, 1855–1868 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chaaban, S. & Carter, A. P.Structure of dynein–dynactin on microtubules shows tandem adaptor binding. Nature 610, 212–216 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Htet, Z. M. et al. LIS1 promotes the formation of activated cytoplasmic dynein-1 complexes. Nat. Cell Biol. 22, 518–525 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marzo, M. G., Griswold, J. M. & Markus, S. M. Pac1/LIS1 stabilizes an uninhibited conformation of dynein to coordinate its localization and activity. Nat. Cell Biol. 22, 559–569 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Elshenawy, M. M. et al. LIS1 activates dynein motility by modulating its pairing with dynactin. Nat. Cell Biol. 22, 570–578 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McKenney, R. J. LIS1 cracks open dynein. Nat. Cell Biol. 22, 515–517 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Markus, S. M., Marzo, M. G. & McKenney, R. J. New insights into the mechanism of dynein motor regulation by lissencephaly-1. eLife 9, e59737 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ton, W. D. et al. Microtubule-binding-induced allostery triggers LIS1 dissociation from dynein prior to cargo transport. Nat. Struct. Mol. Biol. 30, 1365–1379 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qiu, R., Zhang, J. & Xiang, X. LIS1 regulates cargo-adapter-mediated activation of dynein by overcoming its autoinhibition in vivo. J. Cell Biol. 218, 3630–3646 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Singh, K. et al. Molecular mechanism of dynein–dynactin complex assembly by LIS1. Science 383, eadk8544 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao, Y., Oten, S. & Yildiz, A. Nde1 promotes LIS1-mediated activation of dynein. Nat. Commun. 14, 7221 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Okada, K. et al. Conserved roles for the dynein intermediate chain and Ndel1 in assembly and activation of dynein. Nat. Commun. 14, 5833 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pandey, J. P., Shi, L., Brebion, R. A. & Smith, D. S. LIS1 and Ndel1 regulate axonal trafficking of mitochondria in mature neurons. Front. Mol. Neurosci. 15, 841047 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Garrott, S. R., Gillies, J. P. & DeSantis, M. E. Nde1 and Ndel1: outstanding mysteries in dynein-mediated transport. Front. Cell Dev. Biol. 10, 871935 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chu, Y. et al. Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease. Brain 135, 2058–2073 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hoang, H. T., Schlager, M. A., Carter, A. P. & Bullock, S. L. DYNC1H1 mutations associated with neurological diseases compromise processivity of dynein–dynactin–cargo adaptor complexes. Proc. Natl Acad. Sci. USA 114, E1597–E1606 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reiner, O. et al. Isolation of a Miller–Dieker lissencephaly gene containing G protein β-subunit-like repeats. Nature 364, 717–721 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Marzo, M. G. et al. Molecular basis for dyneinopathies reveals insight into dynein regulation and dysfunction. eLife 8, e47246 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Scherer, J., Yi, J. & Vallee, R. B. Role of cytoplasmic dynein and kinesins in adenovirus transport. FEBS Lett. 594, 1838–1847 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Schmidt, H. & Carter, A. P. Review: structure and mechanism of the dynein motor ATPase. Biopolymers 105, 557–567 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cianfrocco, M. A., DeSantis, M. E., Leschziner, A. E. & Reck-Peterson, S. L. Mechanism and regulation of cytoplasmic dynein. Annu. Rev. Cell Dev. Biol. 31, 83–108 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rao, L. & Gennerich, A. Structure and function of dynein’s non-catalytic subunits. Cells 13, 330 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Numata, N., Shima, T., Ohkura, R., Kon, T. & Sutoh, K. C-sequence of the Dictyostelium cytoplasmic dynein participates in processivity modulation. FEBS Lett. 585, 1185–1190 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Cho, C., Reck-Peterson, S. L. & Vale, R. D. Regulatory ATPase sites of cytoplasmic dynein affect processivity and force generation. J. Biol. Chem. 283, 25839–25845 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kon, T., Mogami, T., Ohkura, R., Nishiura, M. & Sutoh, K. ATP hydrolysis cycle-dependent tail motions in cytoplasmic dynein. Nat. Struct. Mol. Biol. 12, 513–519 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Kon, T., Nishiura, M., Ohkura, R., Toyoshima, Y. Y. & Sutoh, K. Distinct functions of nucleotide-binding/hydrolysis sites in the four AAA modules of cytoplasmic dynein. Biochemistry 43, 11266–11274 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Kon, T. et al. Helix sliding in the stalk coiled coil of dynein couples ATPase and microtubule binding. Nat. Struct. Mol. Biol. 16, 325–333 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gennerich, A., Carter, A. P., Reck-Peterson, S. L. & Vale, R. D. Force-induced bidirectional stepping of cytoplasmic dynein. Cell 131, 952–965 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mogami, T., Kon, T., Ito, K. & Sutoh, K. Kinetic characterization of tail swing steps in the ATPase cycle of Dictyostelium cytoplasmic dynein. J. Biol. Chem. 282, 21639–21644 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Reck-Peterson, S. L. et al. Single-molecule analysis of dynein processivity and stepping behavior. Cell 126, 335–348 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schmidt, H., Zalyte, R., Urnavicius, L. & Carter, A. P. Structure of human cytoplasmic dynein-2 primed for its power stroke. Nature 518, 435–438 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Carter, A. P. Crystal clear insights into how the dynein motor moves. J. Cell Sci. 126, 705–713 (2013).

    CAS  PubMed  Google Scholar 

  46. Kon, T. et al. The 2.8 Å crystal structure of the dynein motor domain. Nature 484, 345–350 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Schmidt, H., Gleave, E. S. & Carter, A. P. Insights into dynein motor domain function from a 3.3-Å crystal structure. Nat. Struct. Mol. Biol. 19, 492–497 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Carter, A. P., Cho, C., Jin, L. & Vale, R. D. Crystal structure of the dynein motor domain. Science 331, 1159–1165 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bhabha, G. et al. Allosteric communication in the dynein motor domain. Cell 159, 857–868 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Canty, J. T., Tan, R., Kusakci, E., Fernandes, J. & Yildiz, A. Structure and mechanics of dynein motors. Annu. Rev. Biophys. 50, 549–574 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Roberts, A. J. et al. ATP-driven remodeling of the linker domain in the dynein motor. Structure 20, 1670–1680 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Burgess, S. A., Walker, M. L., Sakakibara, H., Knight, P. J. & Oiwa, K. Dynein structure and power stroke. Nature 421, 715–718 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Rao, L., Berger, F., Nicholas, M. P. & Gennerich, A. Molecular mechanism of cytoplasmic dynein tension sensing. Nat. Commun. 10, 3332 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Rao, Q. et al. Structures of outer-arm dynein array on microtubule doublet reveal a motor coordination mechanism. Nat. Struct. Mol. Biol. 28, 799–810 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sweeney, H. L. & Houdusse, A. Structural and functional insights into the myosin motor mechanism. Annu. Rev. Biophys. 39, 539–557 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Oosterheert, W. et al. Molecular mechanisms of inorganic-phosphate release from the core and barbed end of actin filaments. Nat. Struct. Mol. Biol. 30, 1774–1785 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Moore, J. D. & Endow, S. A. Kinesin proteins: a phylum of motors for microtubule-based motility. Bioessays 18, 207–219 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Can, S., Lacey, S., Gur, M., Carter, A. P. & Yildiz, A. Directionality of dynein is controlled by the angle and length of its stalk. Nature 566, 407–410 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. DeWitt, M. A., Cypranowska, C. A., Cleary, F. B., Belyy, V. & Yildiz, A. The AAA3 domain of cytoplasmic dynein acts as a switch to facilitate microtubule release. Nat. Struct. Mol. Biol. 22, 73–80 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Carter, A. P. & Vale, R. D. Communication between the AAA+ ring and microtubule-binding domain of dynein. Biochem. Cell Biol. 88, 15–21 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nishida, N. et al. Structural basis for two-way communication between dynein and microtubules. Nat. Commun. 11, 1038 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Niekamp, S., Coudray, N., Zhang, N., Vale, R. D. & Bhabha, G. Coupling of ATPase activity, microtubule binding, and mechanics in the dynein motor domain. EMBO J. 38, e101414 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kato, Y. S. et al. Structure of the microtubule-binding domain of flagellar dynein. Structure 22, 1628–1638 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Nishikawa, Y. et al. Structure of the entire stalk region of the dynein motor domain. J. Mol. Biol. 426, 3232–3245 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Redwine, W. B. et al. Structural basis for microtubule binding and release by dynein. Science 337, 1532–1536 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Carter, A. P. et al. Structure and functional role of dynein’s microtubule-binding domain. Science 322, 1691–1695 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lacey, S. E., He, S., Scheres, S. H. & Carter, A. P. Cryo-EM of dynein microtubule-binding domains shows how an axonemal dynein distorts the microtubule. eLife 8, e47145 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Uchimura, S. et al. A flipped ion pair at the dynein–microtubule interface is critical for dynein motility and ATPase activation. J. Cell Biol. 208, 211–222 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li, L., Alper, J. & Alexov, E. Cytoplasmic dynein binding, run length, and velocity are guided by long-range electrostatic interactions. Sci. Rep. 6, 31523 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Holzbaur, E. L. & Johnson, K. A. Microtubules accelerate ADP release by dynein. Biochemistry 28, 7010–7016 (1989).

    Article  CAS  PubMed  Google Scholar 

  71. Amos, L. A. Brain dynein crossbridges microtubules into bundles. J. Cell Sci. 93, 19–28 (1989).

    Article  CAS  PubMed  Google Scholar 

  72. Toropova, K. et al. Structure of the dynein-2 complex and its assembly with intraflagellar transport trains. Nat. Struct. Mol. Biol. 26, 823–829 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chai, P., Rao, Q., Wang, Y. & Zhang, K. High-resolution structural analysis of dyneins by cryo-electron microscopy. Methods Mol. Biol. 2623, 257–279 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chai, P., Rao, Q. & Zhang, K. Multi-curve fitting and tubulin-lattice signal removal for structure determination of large microtubule-based motors. J. Struct. Biol. 214, 107897 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Miura, M., Matsubara, A., Kobayashi, T., Edamatsu, M. & Toyoshima, Y. Y. Nucleotide-dependent behavior of single molecules of cytoplasmic dynein on microtubules in vitro. FEBS Lett. 584, 2351–2355 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Holzbaur, E. L. F. & Johnson, K. A. Adp release is rate limiting in steady-state turnover by the dynein adenosine-triphosphatase. Biochemistry 28, 5577–5585 (1989).

    Article  CAS  PubMed  Google Scholar 

  77. Nishikawa, Y., Inatomi, M., Iwasaki, H. & Kurisu, G. Structural change in the dynein stalk region associated with two different affinities for the microtubule. J. Mol. Biol. 428, 1886–1896 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Gillies, J. P. et al. Structural basis for cytoplasmic dynein-1 regulation by LIS1. eLife 11, e71229 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Roberts, A. J. et al. AAA+ ring and linker swing mechanism in the dynein motor. Cell 136, 485–495 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hanson, P. I. & Whiteheart, S. W. AAA+ proteins: have engine, will work. Nat. Rev. Mol. Cell Biol. 6, 519–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Can, S., Lacey, S., Gur, M., Carter, A. & Yildiz, A. Dynein’s directionality is controlled by the angle and length of its stalk. Biophys. J. 116, 309a (2019).

    Article  Google Scholar 

  82. Lin, J., Okada, K., Raytchev, M., Smith, M. C. & Nicastro, D. Structural mechanism of the dynein power stroke. Nat. Cell Biol. 16, 479–485 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nicholas, M. P. et al. Cytoplasmic dynein regulates its attachment to microtubules via nucleotide state-switched mechanosensing at multiple AAA domains. Proc. Natl Acad. Sci. USA 112, 6371–6376 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yildiz, A. Mechanics of dynein motility. In Handbook of Dynein (ed. Hirose, K.) (Jenny Stanford Publishing, 2019).

  85. Carter, A. P., Diamant, A. G. & Urnavicius, L. How dynein and dynactin transport cargos: a structural perspective. Curr. Opin. Struct. Biol. 37, 62–70 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Peng, C. S. et al. Nanometer-resolution tracking of single cargo reveals dynein motor mechanisms. Nat. Chem. Biol. https://doi.org/10.1038/s41589-024-01694-2 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Slivka, J. et al. Stepping dynamics of dynein characterized by MINFLUX. Preprint at bioRxiv https://doi.org/10.1101/2024.07.16.603667 (2024).

  88. Schleske, J. M. et al. MINFLUX reveals dynein stepping in live neurons. Proc. Natl Acad. Sci. USA 121, e2412241121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cleary, F. B. et al. Tension on the linker gates the ATP-dependent release of dynein from microtubules. Nat. Commun. 5, 4587 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Dutta, M. & Jana, B. Computational modeling of dynein motor proteins at work. Chem. Commun. 57, 272–283 (2021).

    Article  CAS  Google Scholar 

  91. Ibusuki, R. et al. Programmable molecular transport achieved by engineering protein motors to move on DNA nanotubes. Science 375, 1159–1164 (2022).

    Article  CAS  PubMed  Google Scholar 

  92. Rao, L. et al. The power of three: dynactin associates with three dyneins under load for greater force production. Preprint at bioRxiv https://doi.org/10.1101/2025.01.14.632506 (2025).

  93. Ecklund, K. H. et al. She1 affects dynein through direct interactions with the microtubule and the dynein microtubule-binding domain. Nat. Commun. 8, 2151 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Mahamdeh, M., Simmert, S., Luchniak, A., Schaffer, E. & Howard, J. Label-free high-speed wide-field imaging of single microtubules using interference reflection microscopy. J. Microsc. 272, 60–66 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article  PubMed  Google Scholar 

  96. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Kidmose, R. T. et al. Namdinator—automatic molecular dynamics flexible fitting of structural models into cryo-EM and crystallography experimental maps. IUCrJ 6, 526–531 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Casanal, A., Lohkamp, B. & Emsley, P. Current developments in Coot for macromolecular model building of electron cryo-microscopy and crystallographic data. Protein Sci. 29, 1069–1078 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Brown, A. et al. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr. D Biol. Crystallogr. 71, 136–153 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are very grateful to members of the K.Z. and S.M.M. laboratories for their valuable discussions. We thank R. Yang for the initial dynein 1 expression and preparations in the lab. This work was funded by the National Institutes of Health (NIH) National Institute of General Medical Sciences (R35GM139483 to S.M.M. and R35GM142959 to K.Z.) and in part by a Collaboration Development Award Program (to K.Z.) from the Pittsburgh Center for Human Immunodeficiency Virus Protein Interactions (U54AI170791). We would like to thank K. Zhou, J. Lin, M. Llaguno and S. Wu, for their help with cryo-EM data collection at the Yale Cryo-EM facility. The Yale Cryo-EM resource is funded in part by the NIH grant S10OD023603 awarded to F. Sigworth. We thank L. Wang, J. Kaminsky and G. Hu at the LBMS for help with cryo-EM data collection. The LBMS is supported by the Department of Energy Office of Biological and Environmental Research (KP1607011).

Author information

Authors and Affiliations

Authors

Contributions

K.Z. designed the study. J.Y. and Y.W. purified the full-length human proteins. J.Y., Y.W. and P.C. prepared the cryo-EM samples and collected the data. P.C., J.Y., Y.W. and K.Z. processed the images and built the PDB models. S.M.M. purified the human MT-B dynein motor domain. I.C.G. generated the yeast strains and purified the proteins from yeast. I.C.G. and S.M.M. performed and analyzed the ATPase and single-molecule assays. P.C., J.Y. Y.W., K.Z. and S.M.M. generated the figures and videos. P.C., J.Y. and K.Z. wrote the manuscript. P.C., J.Y., Y.W., K.Z. and S.M.M. edited and revised the manuscript. S.M.M. and K.Z. acquired funding.

Corresponding authors

Correspondence to Steven M. Markus, Yue Wang or Kai Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks Stephen King, Xin Xiang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available. Primary Handling Editor: Katarzyna Ciazynska, in collaboration with the Nature Structural & Molecular Biology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Cryo-EM data processing of full-length human dynein-1 in the presence of 5 mM ATP.

(a) A representative negative staining micrograph (total 100 micrographs) of purified full-length human dynein-1 and corresponding 2D class averages. (b) A typical cryo-EM micrograph (total 33,302 micrographs) and the flowchart of cryo-EM image processing. (c) Image processing of full-length phi dynein and tail region. (d, e) Orientation distribution of phi dynein and a representative state from open dynein. (f, g) The Fourier shell correlation (FSC) curves of the motor domain in different states and the tail domain. Datasets for dynein in other nucleotide conditions (ATP-Vi, AMPPNP, ADP, apo) were processed similarly.

Extended Data Fig. 2 Local resolution analysis and identification of bound nucleotides in AAA1, AAA3, and AAA4 in different states from the dynein-ATP dataset.

The color scheme for the motor domain is consistent with Fig. 4.

Extended Data Fig. 3 Cryo-EM data processing of full-length human dynein-1 bound to MTs.

(a) Flowchart of sample preparation and typical cryo-EM micrographs of dynein bound to MTs in apo, ADP, and AMPPNP conditions. The number of micrographs is shown in the panel. (b) Microtubule signal subtraction and image processing flowchart. (c) Orientation distribution of dynein-MT-ADP reconstruction. (d) FSC curves of four MT-bound motors. (e) Plot for the full-length dynein bound to MTs in different conformations (two stable heads, one stable trailing head, and one stable leading head).

Extended Data Fig. 4 Cryo-EM analysis of dynein in ATP-Vi and AMPPNP conditions.

(a) Cartoon schematic depicting the experimental method for cryo-EM analysis of full-length dynein in different nucleotide conditions. (b) Typical cryo-EM micrographs of dynein in different nucleotide conditions, with total number of micrographs shown in the panel. (c, d, e) FSC curves and local resolution analysis of dynein in ATP-Vi, AMPPNP-low Mg2+, and AMPPNP-high Mg2+ conditions.

Extended Data Fig. 5 Cryo-EM analysis of dynein in ADP and apo conditions and dynein-bound to microtubules.

(a, b) FSC curves and local resolution analysis of dynein in ADP and apo conditions. (c) FSC curves and local resolution analysis of dynein-bound to microtubules.

Extended Data Fig. 6 The conformational landscapes of active cycle motor domains in different nucleotide conditions.

(a-f) Conformation landscapes of motor domains in ATP, ATP-Vi, AMPPNP, ADP, and apo conditions. Arrows indicate mechanochemical pathways. Percentages indicate the proportion of particles in each state. The missing states in each condition are shown in grey. Phi dynein is not included in this figure.

Extended Data Fig. 7 Cryo-EM densities of the nucleotide and sensor-I loop in various closed AAA1 states.

(a) From this work. (b) From previously published structures (PDB:8FD6 ref. 21, 7MGM ref. 78). The conformations of N2019 and Y2022 are highlighted.

Extended Data Fig. 8 Structural comparisons of MT-bound and -unbound dynein motors.

(a) Comparison between MT-dynein in apo condition with state-8 motor domain. (b) Comparison between MT-dynein in ADP condition with state-7 motor domains. (c) Comparison between MT-dynein in AMPPNP condition with state-7 motor domains. The nucleotide states in AAA1, AAA3, and AAA4 and the linker docking mode are listed. The MT-bound dynein motor domains (from linker to C-terminus) were used as references for structural fitting in ChimeraX.

Extended Data Fig. 9 Systematic analysis of linker-ring interactions among four MT-bound motor domains.

(a) Cartoon and molecular models showing the interaction interfaces including linker-AAA2L, linker-AAA5L, and linker-AAA3-4-connector helix. (b-e) Comparison of linker docking modes between dynein-1 and outer-arm dynein.

Extended Data Fig. 10 Structural survey of motor domains and statistical analysis of crosstalk between AAA1 and AAA3.

(a) Flowchart of structural survey of 56 motor domain structures. (b) Statistical graphs showing how AAA1 communicates to AAA3, linker and MTBD. (c) Statistical graphs showing how AAA3 communicates to AAA1, linker and MTBD. (d) Cartoon model summarizing communication between AAA1, AAA3, linker and MTBD.

Supplementary information

Supplementary Information

Supplementary Notes 1–5, Figs. 1 and 2 and Tables 1–8.

Reporting Summary

Peer Review File

Supplementary Data 1

Features of the motor domains in different states.

Supplementary Data 2

Structural survey of the dynein 1 motor domains.

Supplementary Video 1

High-resolution cryo-EM map of phi dynein and representative local density maps.

Supplementary Video 2

High-resolution cryo-EM reconstruction of dynein bound to MTs.

Supplementary Video 3

The release of Pi from dynein AAA1 through the backdoor mechanism, triggering the linker straightening.

Supplementary Video 4

Communication between AAA1 pocket dynamics and MTBD.

Supplementary Video 5

The forward-stepping mechanism of dynein along MTs.

Source data

Source Data Fig. 1

Statistical source data (dynein conformational distribution).

Source Data Fig. 2

Statistical source data (ATPase values).

Source Data Fig. 3

Statistical source data (single-molecule motility data).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, P., Yang, J., Geohring, I.C. et al. The mechanochemical cycle of reactive full-length human dynein 1. Nat Struct Mol Biol 32, 1383–1395 (2025). https://doi.org/10.1038/s41594-025-01543-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41594-025-01543-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing