Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

FLEP-seq: simultaneous detection of RNA polymerase II position, splicing status, polyadenylation site and poly(A) tail length at genome-wide scale by single-molecule nascent RNA sequencing

Abstract

Elongation, splicing and polyadenylation are fundamental steps of transcription, and studying their coordination requires simultaneous monitoring of these dynamic processes on one transcript. We recently developed a full-length nascent RNA sequencing method in the model plant Arabidopsis that simultaneously detects RNA polymerase II position, splicing status, polyadenylation site and poly(A) tail length at genome-wide scale. This method allows calculation of the kinetics of cotranscriptional splicing and detects polyadenylated transcripts with unspliced introns retained at specific positions posttranscriptionally. Here we describe a detailed protocol for this method called FLEP-seq (full-length elongating and polyadenylated RNA sequencing) that is applicable to plants. Library production requires as little as one nanogram of nascent RNA (after rRNA/tRNA removal), and either Nanopore or PacBio platforms can be used for sequencing. We also provide a complete bioinformatic pipeline from raw data processing to downstream analysis. The minimum time required for FLEP-seq, including RNA extraction and library preparation, is 36 h. The subsequent long-read sequencing and initial data analysis ranges between 31 and 40 h, depending on the sequencing platform.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of FLEP-seq protocol.
Fig. 2: Bioinformatics workflow.
Fig. 3: Application of FLEP-seq.
Fig. 4: An example of subcellular protein fractionation from 12-d-old Arabidopsis seedlings.
Fig. 5: The RNA fractions extracted from 12-d-old Arabidopsis seedlings.
Fig. 6: cDNA amplification product after rRNA depletion.
Fig. 7: Examples of bioanalyzer plots.
Fig. 8: Nanopore sequencing run statistics for reads yield and read length.
Fig. 9: The performance of PolyAcaller on Nanopore data.

Similar content being viewed by others

Data availability

The data used in this study were previously published35 and deposited at NCBI under the accession number PRJNA591665.

Code availability

All software used in this study is described in detail in the Equipment section. Custom Python and R code used for bioinformatics analysis have been deposited in a GitHub repository (https://github.com/ZhaiLab-SUSTech/FLEPSeq).

References

  1. Herzel, L., Ottoz, D. S. M., Alpert, T. & Neugebauer, K. M. Splicing and transcription touch base: co-transcriptional spliceosome assembly and function. Nat. Rev. Mol. Cell Biol. 18, 637–650 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Naftelberg, S., Schor, I. E., Ast, G. & Kornblihtt, A. R. Regulation of alternative splicing through coupling with transcription and chromatin structure. Annu. Rev. Biochem. 84, 165–198 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Bentley, D. L. Coupling mRNA processing with transcription in time and space. Nat. Rev. Genet. 15, 163–175 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Carrillo Oesterreich, F. et al. Splicing of nascent RNA coincides with intron exit from RNA Polymerase II. Cell 165, 372–381 (2016).

    Article  CAS  Google Scholar 

  5. Herzel, L., Straube, K. & Neugebauer, K. M. Long-read sequencing of nascent RNA reveals coupling among RNA processing events. Genome Res. 28, 1008–1019 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reimer, K. A., Mimoso, C. A., Adelman, K. & Neugebauer, K. M. Co-transcriptional splicing regulates 3’ end cleavage during mammalian erythropoiesis. Mol. Cell https://doi.org/10.1016/j.molcel.2020.12.018 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Drexler, H. L., Choquet, K. & Churchman, L. S. Splicing kinetics and coordination revealed by direct nascent RNA sequencing through nanopores. Mol. Cell 77, 985–998.e988 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Drexler, H. L. et al. Revealing nascent RNA processing dynamics with nano-COP. Nat. Protoc. https://doi.org/10.1038/s41596-020-00469-y (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sousa-Luis, R. et al. POINT technology illuminates the processing of polymerase-associated intact nascent transcripts. Mol. Cell 81, 1935–1950.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wissink, E. M., Vihervaara, A., Tippens, N. D. & Lis, J. T. Nascent RNA analyses: tracking transcription and its regulation. Nat. Rev. Genet. 20, 705–723 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mayer, A. et al. Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution. Cell 161, 541–554 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bhatt, DevM. et al. Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell 150, 279–290 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nechaev, S. et al. Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila. Science 327, 335 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Churchman, L. S. & Weissman, J. S. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469, 368–373 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Nojima, T. et al. Mammalian NET-Seq reveals genome-wide nascent transcription coupled to RNA processing. Cell 161, 526–540 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Core, L. J., Waterfall, J. J. & Lis, J. T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kwak, H., Fuda, N. J., Core, L. J. & Lis, J. T. Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science 339, 950–953 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Judd, J. et al. A rapid, sensitive, scalable method for Precision Run-On sequencing (PRO-seq). Preprint at bioRxiv https://doi.org/10.1101/2020.05.18.102277 (2020).

  19. Rabani, M. et al. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat. Biotechnol. 29, 436–442 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schwalb, B. et al. TT-seq maps the human transient transcriptome. Science 352, 1225 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Herzog, V. A. et al. Thiol-linked alkylation of RNA to assess expression dynamics. Nat. Methods 14, 1198–1204 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schofield, J. A., Duffy, E. E., Kiefer, L., Sullivan, M. C. & Simon, M. D. TimeLapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding. Nat. Methods 15, 221–225 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shepard, P. J. et al. Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. RNA 17, 761–772 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Harrison, P. F. et al. PAT-seq: a method to study the integration of 3’-UTR dynamics with gene expression in the eukaryotic transcriptome. RNA 21, 1502–1510 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ozsolak, F. et al. Direct RNA sequencing. Nature 461, 814–818 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Chang, H., Lim, J., Ha, M. & Kim, V. N. TAIL-seq: genome-wide determination of poly(A) tail length and 3′ end modifications. Mol. Cell 53 (2014).

  27. Lim, J., Lee, M., Son, A., Chang, H. & Kim, V. N. mTAIL-seq reveals dynamic poly(A) tail regulation in oocyte-to-embryo development. Genes Dev. 30, 1671–1682 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Subtelny, A. O., Eichhorn, S. W., Chen, G. R., Sive, H. & Bartel, D. P. Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 508, 66–71 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Legnini, I., Alles, J., Karaiskos, N., Ayoub, S. & Rajewsky, N. FLAM-seq: full-length mRNA sequencing reveals principles of poly(A) tail length control. Nat. Methods 16, 879–886 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Liu, Y., Nie, H., Liu, H. & Lu, F. Poly(A) inclusive RNA isoform sequencing (PAIso−seq) reveals wide-spread non-adenosine residues within RNA poly(A) tails. Nat. Commun. 10, 5292 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Parker, M. T. et al. Nanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m6A modification. eLife 9, e49658 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Workman, R. E. et al. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat. Methods 16, 1297–1305 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Roach, N. P. et al. The full-length transcriptome of C. elegans using direct RNA sequencing. Genome Res 30, 299–312 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim, D. et al. The architecture of SARS-CoV-2 transcriptome. Cell 181, 914–921.e910 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jia, J. et al. Post-transcriptional splicing of nascent RNA contributes to widespread intron retention in plants. Nat. Plants 6, 780–788 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Boutz, P. L., Bhutkar, A. & Sharp, P. A. Detained introns are a novel, widespread class of post-transcriptionally spliced introns. Genes Dev. 29, 63–80 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Mauger, O., Lemoine, F. & Scheiffele, P. Targeted intron retention and excision for rapid gene regulation in response to neuronal activity. Neuron 92, 1266–1278 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Naro, C. et al. An orchestrated intron retention program in meiosis controls timely usage of transcripts during germ cell differentiation. Dev. Cell 41, 82–93.e84 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gahura, O. et al. Prp45 affects Prp22 partition in spliceosomal complexes and splicing efficiency of non-consensus substrates. J. Cell. Biochem. 106, 139–151 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Siatecka, M., Reyes, J. L. & Konarska, M. M. Functional interactions of Prp8 with both splice sites at the spliceosomal catalytic center. Genes Dev. 13, 1983–1993 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhu, D. et al. The features and regulation of co-transcriptional splicing in Arabidopsis. Mol. Plant 13, 278–294 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Krause, M. et al. tailfindr: alignment-free poly(A) length measurement for Oxford Nanopore RNA and DNA sequencing. RNA 25, 1229–1241 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Cheng, C.-Y. et al. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 89, 789–804 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for the useful comments and edits suggested by the anonymous reviewers. The group of J.Z. is supported by a Stable Support Plan Program of Shenzhen Natural Science Fund Grant (20200925153345004), a National Key R&D Program of China Grant (2019YFA0903903), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2016ZT06S172), the Shenzhen Sci-Tech Fund (KYTDPT20181011104005) and the Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes (2019KSYS006).

Author information

Authors and Affiliations

Authors

Contributions

Y.L., J.J. and J.Z. conceived and designed the study. Y.L., J.J. and X.J. developed the method and performed the experiments. J.J., W.M. and J.Z. designed the computational pipeline and analyzed the data. J.Z. conceived and oversaw the study. All authors wrote and revised the manuscript.

Corresponding author

Correspondence to Jixian Zhai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Zongwei Cai, Shona Murphy, Yongsheng Shi and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Jia et al. Nat. Plants 6, 780–788 (2020): https://doi.org/10.1038/s41477-020-0688-1

Key data used in this protocol

Jia et al. Nat. Plants 6, 780–788 (2020): https://doi.org/10.1038/s41477-020-0688-1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, Y., Jia, J., Mo, W. et al. FLEP-seq: simultaneous detection of RNA polymerase II position, splicing status, polyadenylation site and poly(A) tail length at genome-wide scale by single-molecule nascent RNA sequencing. Nat Protoc 16, 4355–4381 (2021). https://doi.org/10.1038/s41596-021-00581-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41596-021-00581-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research