Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Seamless site-directed mutagenesis in complex cloned DNA sequences using the RedEx method

Abstract

Seamless site-directed mutagenesis is an important technique for studying protein functions, tuning enzyme catalytic activities and modifying genetic elements in multiple rounds because it can insert, delete or substitute nucleotides, DNA segments or even entire genes at the target site without introducing any unwanted change. To facilitate seamless site-directed mutagenesis in large plasmids and bacterial artificial chromosomes (BACs) with repetitive sequences, we recently developed the RedEx strategy. Compared with previous methods, our approach achieves the recovery of correct recombinants with high accuracy by circumventing unwanted recombination between repetitive sequences. RedEx readily yields more than 80% accuracy in seamless DNA insertion and deletion in large multimodular polyketide synthase gene clusters, which are among the most difficult targets due to the large number of repetitive DNA sequences in modules encoding almost identical enzymes. Here we present the RedEx method by describing in detail the seamless site-directed mutagenesis in a BAC vector. Overall, the process includes three parts: (1) insertion of the RedEx cassette containing the desired mutation together with selection–counterselection markers flanked by unique restriction sites and 20-bp overlapping sequences into the target site by recombineering, (2) removal of the selection–counterselection markers in the BAC by restriction digestion and (3) circularization of the linear BAC by exonuclease-mediated in vitro DNA annealing. This protocol can be performed within 3 weeks and will enable researchers with DNA cloning experience to master seamless site-directed mutagenesis to accelerate their research.

Key points

  • By combining recombineering, ccdB counterselection and exonuclease-mediated in vitro annealing, RedEx achieves seamless mutagenesis of large DNA molecules, including plasmids, fosmids and BACs.

  • Compared with CRISPR-based approaches, this method allows the efficient editing of highly repetitive, multimodular gene clusters and represents a powerful tool for modifying biosynthesis pathways and generating new natural products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the RedEx strategy for seamless site-directed mutagenesis in a BAC.
Fig. 2: Analysis of DNA direct repeats in pBAC-Target using the Unipro UGENE software.
Fig. 3: Analysis of restriction enzymes that did not cleave pBAC-Target (noncutters) by SnapGene software.
Fig. 4: Design templates for point mutations, insertions, deletions and swaps using RedEx.
Fig. 5: Preparation of the RedEx cassette.
Fig. 6: Restriction analysis of pBAC-ampccdB-Mut recombinants after LCHR.
Fig. 7: Restriction analysis of pBAC-Mut recombinants.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available in the supporting primary research paper12.

References

  1. Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., the International Natural Product Sciences Taskforce & Supuran, C. T. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov. 20, 200–216 (2021).

  2. Smanski, M. J. et al. Synthetic biology to access and expand nature’s chemical diversity. Nat. Rev. Microbiol. 14, 135–149 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rutledge, P. J. & Challis, G. L. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat. Rev. Microbiol. 13, 509–523 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Dutta, S. et al. Structure of a modular polyketide synthase. Nature 510, 512–517 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bagde, S. R., Mathews, I. I., Fromme, J. C. & Kim, C. Y. Modular polyketide synthase contains two reaction chambers that operate asynchronously. Science 374, 723–729 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grininger, M. Enzymology of assembly line synthesis by modular polyketide synthases. Nat. Chem. Biol. 19, 401–415 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Winn, M., Fyans, J. K., Zhuo, Y. & Micklefield, J. Recent advances in engineering nonribosomal peptide assembly lines. Nat. Prod. Rep. 33, 317–347 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Tao, X. B. et al. ClusterCAD 2.0: an updated computational platform for chimeric type I polyketide synthase and nonribosomal peptide synthetase design. Nucleic Acids Res. 51, D532–D538 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Englund, E. et al. Expanding extender substrate selection for unnatural polyketide biosynthesis by acyltransferase domain exchange within a modular polyketide synthase. J. Am. Chem. Soc. 145, 8822–8832 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wlodek, A. et al. Diversity oriented biosynthesis via accelerated evolution of modular gene clusters. Nat. Commun. 8, 1206 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ji, C. H. et al. Top-down synthetic biology approach for titer improvement of clinically important antibiotic daptomycin in Streptomyces roseosporus. Metab. Eng. 69, 40–49 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Song, C. et al. RedEx: a method for seamless DNA insertion and deletion in large multimodular polyketide synthase gene clusters. Nucleic Acids Res. 48, e130 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, Y., Buchholz, F., Muyrers, J. P. P. & Stewart, A. F. A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 20, 123–128 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, Y., Muyrers, J. P. P., Testa, G. & Stewart, A. F. DNA cloning by homologous recombination in Escherichia coli. Nat. Biotechnol. 18, 1314–1317 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Sarov, M. et al. A recombineering pipeline for functional genomics applied to Caenorhabditis elegans. Nat. Methods 3, 839–844 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Bird, A. W. et al. High-efficiency counterselection recombineering for site-directed mutagenesis in bacterial artificial chromosomes. Nat. Methods 9, 103–109 (2012).

    Article  CAS  Google Scholar 

  17. Wang, H. et al. Improved seamless mutagenesis by recombineering using ccdB for counterselection. Nucleic Acids Res. 42, e37 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, H. et al. RecET direct cloning and Redαβ recombineering of biosynthetic gene clusters, large operons or single genes for heterologous expression. Nat. Protoc. 11, 1175–1190 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, H. H. et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894–898 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Isaacs, F. J. et al. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science 333, 348–353 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gallagher, R. R., Li, Z., Lewis, A. O. & Isaacs, F. J. Rapid editing and evolution of bacterial genomes using libraries of synthetic DNA. Nat. Protoc. 9, 2301–2316 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Fredens, J. et al. Total synthesis of Escherichia coli with a recoded genome. Nature 569, 514–518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sharan, S. K., Thomason, L. C., Kuznetsov, S. G. & Court, D. L. Recombineering: a homologous recombination-based method of genetic engineering. Nat. Protoc. 4, 206–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li, R., Li, A., Zhang, Y. & Fu, J. The emerging role of recombineering in microbiology. Eng. Microbiol. 3, 100097 (2023).

    Article  CAS  Google Scholar 

  25. Zheng, L., Baumann, U. & Reymond, J. L. An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res. 32, e115 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Muyrers, J. P. P. et al. Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep. 1, 239–243 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, H. et al. ExoCET: exonuclease in vitro assembly combined with RecET recombination for highly efficient direct DNA cloning from complex genomes. Nucleic Acids Res. 46, e28 (2018).

    Article  PubMed  Google Scholar 

  29. Wong, Q. N. et al. Efficient and seamless DNA recombineering using a thymidylate synthase A selection system in Escherichia coli. Nucleic Acids Res. 33, e59 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Warming, S., Costantino, N., Court, D. L., Jenkins, N. A. & Copeland, N. G. Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res. 33, e36 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  31. DeVito, J. A. Recombineering with tolC as a selectable/counter-selectable marker: remodeling the rRNA operons of Escherichia coli. Nucleic Acids Res. 36, e4 (2008).

    Article  PubMed  Google Scholar 

  32. Kudo, K. et al. In vitro Cas9-assisted editing of modular polyketide synthase genes to produce desired natural product derivatives. Nat. Commun. 11, 4022 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shao, Z. & Zhao, H. Manipulating natural product biosynthetic pathways via DNA assembler. Curr. Protoc. Chem. Biol. 6, 65–100 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Luo, Y., Zhang, L., Barton, K. W. & Zhao, H. Systematic identification of a panel of strong constitutive promoters from Streptomyces albus. ACS Synth. Biol. 4, 1001–1010 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Engler, C., Kandzia, R. & Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 3, e3647 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Scior, A., Preissler, S., Koch, M. & Deuerling, E. Directed PCR-free engineering of highly repetitive DNA sequences. BMC Biotechnol. 11, 87 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Iacovelli, R., Zwahlen, R. D., Bovenberg, R. A. L. & Driessen, A. J. M. Biochemical characterization of the Nocardia lactamdurans ACV synthetase. PLoS ONE 15, e0231290 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bian, X., Plaza, A., Yan, F., Zhang, Y. & Müller, R. Rational and efficient site-directed mutagenesis of adenylation domain alters relative yields of luminmide derivatives in vivo. Biotechnol. Bioeng. 112, 1343–1353 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Zhong, L. et al. Engineering and elucidation of the lipoinitiation process in nonribosomal peptide biosynthesis. Nat. Commun. 12, 296 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Soeriyadi, A. H. et al. Tailoring enzyme stringency masks the multispecificity of a lyngbyatoxin (indolactam alkaloid) nonribosomal peptide synthetase. ChemBioChem 23, e202100574 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Konigs, V. et al. SRSF7 maintains its homeostasis through the expression of split-ORFs and nuclear body assembly. Nat. Struct. Mol. Biol. 27, 260–273 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Baker, O. et al. The contribution of homology arms to nuclease-assisted genome engineering. Nucleic Acids Res. 45, 8105–8115 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Medina-Ruiz, L. et al. Analysis of combinatorial chemokine receptor expression dynamics using multi-receptor reporter mice. eLife 11, e72418 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Blanch-Asensio, A. et al. STRAIGHT-IN enables high-throughput targeting of large DNA payloads in human pluripotent stem cells. Cell Rep. Methods 2, 100300 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Botti, V. et al. Cellular differentiation state modulates the mRNA export activity of SR proteins. J. Cell Biol. 216, 1993–2009 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bahlmann, N. A. et al. Properties of adenovirus vectors with increased affinity to DSG2 and the potential benefits of oncolytic approaches and gene therapy. Viruses 14, 1835 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hidalgo, P. et al. Evidence that the adenovirus single-stranded DNA binding protein mediates the assembly of biomolecular condensates to form viral replication compartments. Viruses 13, 1778 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Berman, C. M. et al. An adaptable platform for directed evolution in human cells. J. Am. Chem. Soc. 140, 18093–18103 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, W. et al. An engineered virus library as a resource for the spectrum-wide exploration of virus and vector diversity. Cell Rep. 19, 1698–1709 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, Y. et al. Fiber2 and hexon genes are closely associated with the virulence of the emerging and highly pathogenic fowl adenovirus 4. Emerg. Microbes Infect. 7, 199 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Doerner, J. et al. Novel group C oncolytic adenoviruses carrying a miRNA inhibitor demonstrate enhanced oncolytic activity in vitro and in vivo. Mol. Cancer Ther. 21, 460–470 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cong, L. et al. Multiplex genome engineering using CRISPR–Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, Z. J. et al. Engineered biosynthesis of complex disorazol polyketides in a streamlined Burkholderia thailandensis. ACS Synth. Biol. 12, 971–977 (2023).

    Article  PubMed  Google Scholar 

  55. Wang, Z. J. et al. Engineering of Burkholderia thailandensis strain E264 serves as a chassis for expression of complex specialized metabolites. Front. Microbiol. 13, 1073243 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yi, J. et al. High-efficiency genetic engineering toolkit for virus based on lambda red-mediated recombination. Biotechnol. Lett. 45, 1327–1337 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. Song, C. et al. Enhanced heterologous spinosad production from a 79-kb synthetic multi-operon assembly. ACS Synth. Biol. 8, 137–147 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Jiang, C. et al. Establishing an efficient salinomycin biosynthetic pathway in three heterologous Streptomyces hosts by constructing a 106-kb multioperon artificial gene cluster. Biotechnol. Bioeng. 118, 4668–4677 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Fu, J. et al. Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat. Biotechnol. 30, 440–446 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Li, M. Z. & Elledge, S. J. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat. Methods 4, 251–256 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (32122049); Natural Science Foundation of Shandong Province (ZR2022JQ11 and ZR2019ZD22); National Key Research and Development Program of China (2018YFA0900400, 2021YFC2101000 and 2019YFA0904000); the Fund for Distinguished Young Scholars of SDU; the Fundamental Research Funds of Shandong University (2023QNTD001); Qingdao Key Technology Research and Industrialization Demonstration Project (22-3-4-xxgg-1-nsh); and the 111 Project (B16030). The authors acknowledge J. Qu, J. Zhu and Z. Li of the Core Facilities for Life and Environmental Sciences, State Key laboratory of Microbial Technology of Shandong University for their technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

J.L., A.F.S., J.F., Y.Z. and H.W. designed and supervised the project. J.L., C.S., Y.L., R.H., R.G., Q.C., C.J., X.L. and K.H. performed the experiments. J.L. and H.W. wrote the manuscript. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Hailong Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Imre Berger, Hang Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Wang, H. et al. Nucleic Acids Res. 42, e37 (2014): https://doi.org/10.1093/nar/gkt1339

Song, C. et al. Nucleic Acids Res. 48, e130 (2020): https://doi.org/10.1093/nar/gkaa956

Zhang, Y. et al. Nat. Genet. 20, 123–128 (1998): https://doi.org/10.1038/2417

Muyrers, J. P. P. et al. EMBO Rep. 1, 239–243 (2000): https://doi.org/10.1093/embo-reports/kvd049

Bird, A. W. et al. Nat. Methods 9, 103–109 (2012): https://doi.org/10.1038/nmeth.1803

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luan, J., Song, C., Liu, Y. et al. Seamless site-directed mutagenesis in complex cloned DNA sequences using the RedEx method. Nat Protoc 19, 3360–3388 (2024). https://doi.org/10.1038/s41596-024-01016-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41596-024-01016-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research