Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Divergent synthesis of amino acid-linked O-GalNAc glycan core structures

Abstract

O-GalNAc glycans, also known as mucin-type O-glycans, are primary constituents of mucins on various mucosal sites of the body and also ubiquitously expressed on cell surface and secreted proteins. They have crucial roles in a wide range of physiological and pathological processes, including tumor growth and progression. In addition, altered expression of O-GalNAc glycans is frequently observed during different disease states. Research dedicated to unraveling the structure–function relationships of O-GalNAc glycans has led to the discovery of disease biomarkers and diagnostic tools and the development of O-glycopeptide-based cancer vaccines. Many of these efforts require amino acid-linked O-GalNAc core structures as building blocks to assemble complex O-glycans and glycopeptides. There are eight core structures (cores one to eight), from which all mucin-type O-glycans are derived. In this protocol, we describe the first divergent synthesis of all eight cores from a versatile precursor in practical scales. The protocol involves (i) chemical synthesis of the orthogonally protected precursor (3 days) from commercially available materials, (ii) chemical synthesis of five unique glycosyl donors (1–2 days for each donor) and (iii) selective deprotection of the precursor and assembly of the eight cores (2–4 days for each core). The procedure can be adopted to prepare O-GalNAc cores linked to serine, threonine and tyrosine, which can then be utilized directly for solid-phase glycopeptide synthesis or chemoenzymatic synthesis of complex O-glycans. The procedure empowers researchers with fundamental organic chemistry skills to prepare gram scales of any desired O-GalNAc core(s) or all eight cores concurrently.

Key points

  • O-GalNAc glycans are primary constituents of mucins and are ubiquitously expressed on cell surface and secreted proteins. Synthetic versions are used to study their role in normal and pathological physiology. Most O-GalNAc glycans can be synthesized from eight core structures.

  • In this protocol, the eight amino acid-linked O-GalNAc core structures are synthesized from a single precursor and five glycosyl donors. The precursor is Tn antigen with distinct orthogonal protecting groups.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structures of Tn antigen and O-GalNAc glycan cores 1–8, and their biosynthetic pathway.
Fig. 2: Divergent synthetic strategy to O-GalNAc glycan cores 1–8.
Fig. 3: The complete synthetic process flowchart.
Fig. 4: Chemical synthetic routes to generate glycosyl donors 10 and 11 from commercial substrates.
Fig. 5: Chemical synthetic routes to generate glycosyl donors 12–14.
Fig. 6: Gram-scale synthesis of the versatile precursor 9 and divergent synthesis of cores 1–4.
Fig. 7: Divergent synthesis of cores 5–8 from 9.

Similar content being viewed by others

Data Availability

All relavent data (NMR and MS results) are available in ‘Analytical Data’ and Supplementary Information.

References

  1. Corfield, A. P. Mucins: a biologically relevant glycan barrier in mucosal protection. Biochim. Biophys. Acta 1850, 236–252 (2015).

    CAS  PubMed  Google Scholar 

  2. Linden, S. K., Sutton, P., Karlsson, N. G., Korolik, V. & McGuckin, M. A. Mucins in the mucosal barrier to infection. Mucosal Immunol. 1, 183–197 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hansson, G. C. Mucins and the microbiome. Annu. Rev. Biochem. 89, 769–793 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Steentoft, C. et al. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J. 32, 1478–1488 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Brockhausen, I., Wandall, H. H., Hagen, K. G. T. & Stanley, P. in Essentials of Glycobiology 4th edn (eds Varki A. et al.) 117–128 (Cold Spring Harbor, 2022).

  6. Bagdonaite, I., Pallesen, E. M. H., Nielsen, M. I., Bennett, E. P. & Wandall, H. H. Mucin-type O-GalNAc glycosylation in health and disease. Adv. Exp. Med. Biol. 1325, 25–60 (2021).

    CAS  PubMed  Google Scholar 

  7. Reily, C., Stewart, T. J., Renfrow, M. B. & Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol. 15, 346–366 (2019).

    PubMed  PubMed Central  Google Scholar 

  8. Dube, D. H. & Bertozzi, C. R. Glycans in cancer and inflammation—potential for therapeutics and diagnostics. Nat. Rev. Drug Discov. 4, 477–488 (2005).

    CAS  PubMed  Google Scholar 

  9. Kufe, D. W. Mucins in cancer: function, prognosis and therapy. Nat. Rev. Cancer 9, 874–885 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Martinez-Saez, N., Peregrina, J. M. & Corzana, F. Principles of mucin structure: implications for the rational design of cancer vaccines derived from MUC1-glycopeptides. Chem. Soc. Rev. 46, 7154–7175 (2017).

    CAS  PubMed  Google Scholar 

  11. Gaidzik, N., Westerlind, U. & Kunz, H. The development of synthetic antitumour vaccines from mucin glycopeptide antigens. Chem. Soc. Rev. 42, 4421–4442 (2013).

    CAS  PubMed  Google Scholar 

  12. Borgert, A. et al. Deciphering structural elements of mucin glycoprotein recognition. ACS Chem. Biol. 7, 1031–1039 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Behren, S. et al. Fucose binding motifs on mucin core glycopeptides impact bacterial lectin recognition. Angew. Chem. Int. Ed. 62, e202302437 (2023).

    CAS  Google Scholar 

  14. Marcaurelle, L. A. & Bertozzi, C. R. Recent advances in the chemical synthesis of mucin-like glycoproteins. Glycobiology 12, 69R–77R (2002).

    CAS  PubMed  Google Scholar 

  15. Bello, C. et al. Chemoenzymatic synthesis of glycopeptides to explore the role of mucin 1 glycosylation in cell adhesion. Chembiochem 24, e202200741 (2023).

    CAS  PubMed  Google Scholar 

  16. Pett, C. et al. Microarray analysis of antibodies induced with synthetic antitumor vaccines: specificity against diverse mucin core structures. Chemistry 23, 3875–3884 (2017).

    CAS  PubMed  Google Scholar 

  17. Pedersen, J. W. et al. Seromic profiling of colorectal cancer patients with novel glycopeptide microarray. Int. J. Cancer 128, 1860–1871 (2011).

    CAS  PubMed  Google Scholar 

  18. Naito, S. et al. Generation of novel anti-MUC1 monoclonal antibodies with designed carbohydrate specificities using MUC1 glycopeptide library. ACS Omega 2, 7493–7505 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wandall, H. H. et al. Cancer biomarkers defined by autoantibody signatures to aberrant O-glycopeptide epitopes. Cancer Res. 70, 1306–1313 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Takagi, J. et al. Mucin O-glycans are natural inhibitors of Candida albicans pathogenicity. Nat. Chem. Biol. 18, 762–773 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, D. et al. O-Glycosylation induces amyloid-beta to form new fibril polymorphs vulnerable for degradation. J. Am. Chem. Soc. 143, 20216–20223 (2021).

    CAS  PubMed  Google Scholar 

  22. Jank, T. et al. Tyrosine glycosylation of Rho by Yersinia toxin impairs blastomere cell behaviour in zebrafish embryos. Nat. Commun. 6, 7807 (2015).

    CAS  PubMed  Google Scholar 

  23. Halim, A. et al. Site-specific characterization of threonine, serine, and tyrosine glycosylations of amyloid precursor protein/amyloid beta-peptides in human cerebrospinal fluid. Proc. Natl Acad. Sci. USA 108, 11848–11853 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Steentoft, C. et al. Mining the O-glycoproteome using zinc-finger nuclease-glycoengineered SimpleCell lines. Nat. Methods 8, 977–982 (2011).

    CAS  PubMed  Google Scholar 

  25. Hounsell, E. F. et al. Structural analysis of the O-glycosidically linked core-region oligosaccharides of human meconium glycoproteins which express oncofoetal antigens. Eur. J. Biochem. 148, 367–377 (1985).

    CAS  PubMed  Google Scholar 

  26. Jin, C. et al. Structural diversity of human gastric mucin glycans. Mol. Cell. Proteom. 16, 743–758 (2017).

    CAS  Google Scholar 

  27. Kurosaka, A. et al. Structures of the major oligosaccharides from a human rectal adenocarcinoma glycoprotein. J. Biol. Chem. 258, 11594–11598 (1983).

    CAS  PubMed  Google Scholar 

  28. Capon, C. et al. Structures of O-glycosidically linked oligosaccharides isolated from human meconium glycoproteins. Eur. J. Biochem. 182, 139–152 (1989).

    CAS  PubMed  Google Scholar 

  29. Madunic, K. et al. Specific (sialyl-)Lewis core 2 O-glycans differentiate colorectal cancer from healthy colon epithelium. Theranostics 12, 4498–4512 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sumi, T. et al. Structural characterization of the trisaccharide chain from the skin mucus glycoprotein of the rainbow trout, Salmo gairdneri. Fish. Physiol. Biochem. 25, 11–17 (2001).

    CAS  Google Scholar 

  31. Jin, C. et al. Atlantic salmon carries a range of novel O-glycan structures differentially localized on skin and intestinal mucins. J. Proteome Res. 14, 3239–3251 (2015).

    CAS  PubMed  Google Scholar 

  32. Padra, J. T. et al. Aeromonas salmonicida growth in response to atlantic salmon mucins differs between epithelial sites, is governed by sialylated and N-acetylhexosamine-containing O-glycans, and is affected by Ca(2). Infect. Immun. 85, e00189-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  33. Thomsson, K. A. et al. Mucin O-glycosylation and pathogen binding ability differ between rainbow trout epithelial sites. Fish Shellfish Immunol. 131, 349–357 (2022).

    CAS  PubMed  Google Scholar 

  34. Chai, W. G. et al. Neutral oligosaccharides of bovine submaxillary mucin. A combined mass spectrometry and 1H-NMR study. Eur. J. Biochem. 203, 257–268 (1992).

    CAS  PubMed  Google Scholar 

  35. van Halbeek, H. et al. Structures of monosialyl oligosaccharides isolated from the respiratory mucins of a non-secretor (O, Lea+b−) patient suffering from chronic bronchitis. Characterization of a novel type of mucin carbohydrate core structure. Glycobiology 4, 203–219 (1994).

    PubMed  Google Scholar 

  36. Wang, S. et al. Chemoenzymatic modular assembly of O-GalNAc glycans for functional glycomics. Nat. Commun. 12, 3573 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu, Z. et al. Diversity-oriented chemoenzymatic synthesis of sulfated and nonsulfated core 2 O-GalNAc glycans. J. Org. Chem. 86, 10819–10828 (2021).

    CAS  PubMed  Google Scholar 

  38. Gadi, M. R. et al. Convergent chemoenzymatic synthesis of O-GalNAc rare cores 5, 7, 8 and their sialylated forms. Chem. Sci. 14, 1837–1843 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Pratt, M. R. & Bertozzi, C. R. Synthetic glycopeptides and glycoproteins as tools for biology. Chem. Soc. Rev. 34, 58–68 (2005).

    CAS  PubMed  Google Scholar 

  40. Stergiou, N. et al. The development of vaccines from synthetic tumor-associated mucin glycopeptides and their glycosylation-dependent immune response. Chem. Rec. 21, 3313–3331 (2021).

    CAS  PubMed  Google Scholar 

  41. Dziadek, S. & Kunz, H. Synthesis of tumor-associated glycopeptide antigens for the development of tumor-selective vaccines. Chem. Rec. 3, 308–321 (2004).

    CAS  PubMed  Google Scholar 

  42. Maemura, M., Ohgaki, A., Nakahara, Y., Hojo, H. & Nakahara, Y. Solid-phase synthesis of core 8 O-glycan-linked MUC5AC glycopeptide. Biosci. Biotechnol. Biochem. 69, 1575–1583 (2005).

    CAS  PubMed  Google Scholar 

  43. Komba, S., Meldal, M., Werdelin, O., Jensen, T. & Bock, K. Convenient synthesis of Thr and Ser carrying the tumor associated sialyl-(2-3)-T antigen as building blocks for solid-phase glycopeptide synthesis. J. Chem. Soc. 1, 415–420 (1999).

    Google Scholar 

  44. Pett, C., Schorlemer, M. & Westerlind, U. A unified strategy for the synthesis of mucin cores 1–4 saccharides and the assembled multivalent glycopeptides. Chem. Eur. J. 19, 17001–17010 (2013).

    CAS  PubMed  Google Scholar 

  45. Keil, S., Claus, C., Dippold, W. & Kunz, H. Towards the development of antitumor vaccines: a synthetic conjugate of a tumor-associated MUC1 glycopeptide antigen and a tetanus toxin epitope. Angew. Chem. Int. Ed. 40, 366–369 (2001).

    CAS  Google Scholar 

  46. Liebe, B. & Kunz, H. Solid-phase synthesis of a tumor-associated sialyl-TN antigen glycopeptide with a partial sequence of the ‘tandem repeat’ of the MUC-1 mucin. Angew. Chem. Int. Ed. 36, 618–621 (1997).

    CAS  Google Scholar 

  47. Kunz, H. & Birnbach, S. Synthesis of O-glycopeptides of the tumor-associated TN- and T-antigen type and their binding to bovine serum albumin. Angew. Chem. Int. Ed. 25, 360–362 (1986).

    Google Scholar 

  48. Kuduk, S. D. et al. Synthetic and immunological studies on clustered modes of mucin-related Tn and TF O-linked antigens: the preparation of a glycopeptide-based vaccine for clinical trials against prostate cancer. J. Am. Chem. Soc. 120, 12474–12485 (1998).

    CAS  Google Scholar 

  49. Paulsen, H. & Hölck, J.-P. Synthese der glycopeptide O-b-d-galactopyranosyl-(1-3)-O-(2-acetamido-2-desoxy-a-d-galactopyranosyl)-(1-3)-l-serin und -l-threonin. Carbohydr. Res. 109, 89–107 (1982).

    CAS  PubMed  Google Scholar 

  50. Liebe, B. & Kunz, H. Solid-phase synthesis of a sialyl-Tn-glycoundecapeptide of the MUC1 repeating unit. Helv. Chim. Acta 80, 1473–1482 (1997).

    CAS  Google Scholar 

  51. Cato, D., Buskas, T. & Boons, G. J. Highly efficient stereospecific preparation of Tn and TF building blocks using thioglycosyl donors and the Ph2SO/Tf2O promotor system. J. Carbohydr. Chem. 24, 503–516 (2005).

    CAS  Google Scholar 

  52. Shaik, A. A., Nishat, S. & Andreana, P. R. Stereoselective synthesis of natural and non-natural thomsen-nouveau antigens and hydrazide derivatives. Org. Lett. 17, 2582–2585 (2015).

    CAS  PubMed  Google Scholar 

  53. Rio-Anneheim, S., Paulsen, H., Meldal, M. & Bock, K. Synthesis of the building blocks Na-Fmoc-O-[a-d-Ac3GalN3p-(1-3)-a-d-Ac2GalN3p]-Thr-OPfp and Na-Fmoc-O-[a-d-Ac3GalN3p-(1→6)-a-d-Ac2GalN3p]-Thr-OPfp and their application in the solid phase glycopeptide synthesis of core 5 and core 7 mucin O-glycopeptides. J. Chem. Soc. Perkin Trans. 1, 1071–1080 (1995).

    Google Scholar 

  54. Qiu, D. & Koganty, R. R. A novel glycosyl donor for the synthesis of cancer specific core 5 and sialyl core 5 as glycopeptide building blocks. Tetrahedron Lett. 38, 961–964 (1997).

    CAS  Google Scholar 

  55. Kakita, K. et al. A stereocontrolled construction of 2-azido-2-deoxy-1, 2-cis-α-galactosidic linkages utilizing 2-azido-4, 6-O-benzylidene-2-deoxygalactopyranosyl diphenyl phosphates: stereoselective synthesis of mucin core 5 and core 7 structures. Tetrahedron 68, 5005–5017 (2012).

    CAS  Google Scholar 

  56. Wakao, M. et al. Synthesis of mucin type core 3 and core 5 structures and their interaction analysis with sugar chips. Carbohydr. Res. 516, 108565 (2022).

    CAS  PubMed  Google Scholar 

  57. Guo, Z. & Shao, N. Glycopeptide and glycoprotein synthesis involving unprotected carbohydrate building blocks. Med. Res. Rev. 25, 655–678 (2005).

    CAS  PubMed  Google Scholar 

  58. Peng, W. et al. Recent H3N2 viruses have evolved specificity for extended, branched human-type receptors, conferring potential for increased avidity. Cell Host Microbe 21, 23–34 (2017).

    CAS  PubMed  Google Scholar 

  59. Yu, H. et al. A multifunctional Pasteurella multocida sialyltransferase: a powerful tool for the synthesis of sialoside libraries. J. Am. Chem. Soc. 127, 17618–17619 (2005).

    CAS  PubMed  Google Scholar 

  60. Lin, S. W., Yuan, T. M., Li, J. R. & Lin, C. H. Carboxyl terminus of Helicobacter pylori alpha1,3-fucosyltransferase determines the structure and stability. Biochemistry 45, 8108–8116 (2006).

    CAS  PubMed  Google Scholar 

  61. Higashi, K. & Susaki, H. A novel glycosidation promoted by the combination of trimethylsilyl halide and zinc triflate. Chem. Pharm. Bull. 40, 2019–2022 (1992).

    CAS  Google Scholar 

  62. Orgueira, H. A. et al. Modular synthesis of heparin oligosaccharides. Chem. Eur. J. 9, 140–169 (2003).

    CAS  PubMed  Google Scholar 

  63. Li, J. & Yu, B. A modular approach to the total synthesis of tunicamycins. Angew. Chem. Int. Ed. Engl. 54, 6618–6621 (2015).

    CAS  PubMed  Google Scholar 

  64. Behrendt, R., White, P. & Offer, J. Advances in Fmoc solid-phase peptide synthesis. J. Pept. Sci. 22, 4–27 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Sugiarto, G. et al. A sialyltransferase mutant with decreased donor hydrolysis and reduced sialidase activities for directly sialylating LewisX. ACS Chem. Biol. 7, 1232–1240 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Institute of Health (R44GM123820 and U54HL142019 to L.L.). T.S. thanks the support of Center for Diagnostics & Therapeutics fellowship.

Author information

Authors and Affiliations

Authors

Contributions

M.R.G., J.H. and L.L. designed the research and developed the method. M.R.G., J.H., T.S. and S.F. performed the experiments. M.R.G., J.H. and L.L. drafted the manuscript, which was revised by all authors.

Corresponding author

Correspondence to Lei Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Akihiko Kameyama, Tiehai Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this process.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Wang, S. et al. Nat. Commun. 12, 3573 (2021): https://doi.org/10.1038/s41467-021-23428-x

Gadi, M. R. et al. Chem. Sci. 14, 1837–1843 (2023): https://doi.org/10.1039/D2SC06925C

Supplementary information

Supplementary Information

Supplementary Figs. 1–3, Table 1 and NMR data and spectra.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadi, M.R., Han, J., Shen, T. et al. Divergent synthesis of amino acid-linked O-GalNAc glycan core structures. Nat Protoc 20, 480–517 (2025). https://doi.org/10.1038/s41596-024-01051-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41596-024-01051-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing