Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Droplet-based functional CRISPR screening of cell–cell interactions by SPEAC-seq

Abstract

Cell–cell interactions are essential for the function and contextual regulation of biological tissues. We present a platform for high-throughput microfluidics-supported genetic screening of functional regulators of cell–cell interactions. Systematic perturbation of encapsulated associated cells followed by sequencing (SPEAC-seq) combines genome-wide CRISPR libraries, cell coculture in droplets and microfluidic droplet sorting based on functional read-outs determined by fluorescent reporter circuits to enable the unbiased discovery of interaction regulators. This technique overcomes limitations of traditional methods for characterization of cell–cell communication, which require a priori knowledge of cellular interactions, are highly engineered and lack functional read-outs. As an example of this technique, we describe the investigation of neuroinflammatory intercellular communication between microglia and astrocytes, using genome-wide CRISPR–Cas9 inactivation libraries and fluorescent reporters of NF-κB activation. This approach enabled the discovery of thousands of microglial regulators of astrocyte NF-κB activation important for the control of central nervous system inflammation. Importantly, SPEAC-seq can be adapted to different cell types, screening modalities, cell functions and physiological contexts, only limited by the ability to fluorescently report cell functions and by droplet cultivation conditions. Performing genome-wide screening takes less than 2 weeks and requires microfluidics capabilities. Thus, SPEAC-seq enables the large-scale investigation of cell–cell interactions.

Key points

  • SPEAC-seq uses CRISPR screening, cell coculture in droplets and microfluidic sorting to enable forward genetic screens of regulators of cell–cell communication.

  • The procedure provides a detailed experimental workflow and discusses technical aspects. SPEAC-seq enables the defined pairing of interaction partners, is adaptable to different CRISPR screening modalities, is scalable for unbiased genome-wide discovery of functional regulators and can be adapted with few modifications to study a variety of cell types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the SPEAC-seq workflow.
Fig. 2: Operation of microfluidic devices for co-encapsulation and sorting.
Fig. 3: SPEAC-seq uncovers microglial regulators of astrocyte inflammation.

Similar content being viewed by others

Data availability

All data are available in the primary study describing SPEAC-seq (ref. 6). Sequencing data are available in GEO under the SuperSeries accession number GSE200457.

References

  1. Zhou, X. et al. Circuit design features of a stable two-cell system. Cell 172, 744–757 e717 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ramilowski, J. A. et al. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat. Commun. 6, 7866 (2015).

    CAS  PubMed  Google Scholar 

  3. Rieckmann, J. C. et al. Social network architecture of human immune cells unveiled by quantitative proteomics. Nat. Immunol. 18, 583–593 (2017).

    CAS  PubMed  Google Scholar 

  4. Armingol, E., Officer, A., Harismendy, O. & Lewis, N. E. Deciphering cell-cell interactions and communication from gene expression. Nat. Rev. Genet. 22, 71–88 (2021).

    CAS  PubMed  Google Scholar 

  5. Bock, C. et al. High-content CRISPR screening. Nat. Rev. Methods Primers https://doi.org/10.1038/s43586-022-00098-7 (2022).

  6. Wheeler, M. A. et al. Droplet-based forward genetic screening of astrocyte-microglia cross-talk. Science 379, 1023–1030 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).

    CAS  PubMed  Google Scholar 

  8. Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods 17, 159–162 (2020).

    CAS  PubMed  Google Scholar 

  9. Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Jakobsson, J. E. T., Spjuth, O. & Lagerstrom, M. C. scConnect: a method for exploratory analysis of cell-cell communication based on single-cell RNA-sequencing data. Bioinformatics 37, 3501–3508 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, Y. et al. Cellinker: a platform of ligand-receptor interactions for intercellular communication analysis. Bioinformatics https://doi.org/10.1093/bioinformatics/btab036 (2021).

  12. Ravi, V. M. et al. T-cell dysfunction in the glioblastoma microenvironment is mediated by myeloid cells releasing interleukin-10. Nat. Commun. 13, 925 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Pasqual, G. et al. Monitoring T cell-dendritic cell interactions in vivo by intercellular enzymatic labelling. Nature 553, 496–500 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ge, Y. et al. Enzyme-mediated intercellular proximity labeling for detecting cell–cell interactions. J. Am. Chem. Soc. 141, 1833–1837 (2019).

    CAS  PubMed  Google Scholar 

  15. Liu, Z. et al. Detecting tumor antigen-specific T cells via interaction-dependent fucosyl-biotinylation. Cell 183, 1117–1133 e1119 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Branon, T. C. et al. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 36, 880–887 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Qiu, S. et al. Use of intercellular proximity labeling to quantify and decipher cell–cell interactions directed by diversified molecular pairs. Sci. Adv. 8, eadd2337 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ng, K. K. & Prescher, J. A. Generalized bioluminescent platform to observe and track cellular interactions. Bioconjug. Chem. 33, 1876–1884 (2022).

    CAS  PubMed  Google Scholar 

  19. Nakandakari-Higa, S. et al. Universal recording of immune cell interactions in vivo. Nature 627, 399–399 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Muller, M. et al. Light-mediated discovery of surfaceome nanoscale organization and intercellular receptor interaction networks. Nat. Commun. 12, 7036 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cho, K. F. et al. A light-gated transcriptional recorder for detecting cell-cell contacts. eLife https://doi.org/10.7554/eLife.70881 (2022).

  22. Oslund, R. C. et al. Detection of cell–cell interactions via photocatalytic cell tagging. Nat. Chem. Biol. 18, 850–858 (2022).

    CAS  PubMed  Google Scholar 

  23. Ombrato, L. et al. Generation of neighbor-labeling cells to study intercellular interactions in vivo. Nat. Protoc. 16, 872–892 (2021).

    CAS  PubMed  Google Scholar 

  24. Tang, R. et al. A versatile system to record cell-cell interactions. eLife https://doi.org/10.7554/eLife.61080 (2020).

  25. Clark, I. C. et al. Barcoded viral tracing of single-cell interactions in central nervous system inflammation. Science 372, eabf1230 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kinoshita, N. et al. Genetically encoded fluorescent indicator GRAPHIC delineates intercellular connections. iScience 15, 28–38 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Morsut, L. et al. Engineering customized cell sensing and response behaviors using synthetic notch receptors. Cell 164, 780–791 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, S. et al. Monitoring of cell–cell communication and contact history in mammals. Science 378, eabo5503 (2022).

    CAS  PubMed  Google Scholar 

  29. Giladi, A. et al. Dissecting cellular crosstalk by sequencing physically interacting cells. Nat. Biotechnol. 38, 629–637 (2020).

    CAS  PubMed  Google Scholar 

  30. Dobson, C. S. et al. Antigen identification and high-throughput interaction mapping by reprogramming viral entry. Nat. Methods 19, 449–460 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yu, B. et al. Engineered cell entry links receptor biology with single-cell genomics. Cell 185, 4904–4920 e4922 (2022).

    CAS  PubMed  Google Scholar 

  32. Gee, M. H. et al. Antigen identification for orphan T cell receptors expressed on tumor-infiltrating lymphocytes. Cell 172, 549–563 e516 (2018).

    CAS  PubMed  Google Scholar 

  33. Zilionis, R. et al. Single-cell barcoding and sequencing using droplet microfluidics. Nat. Protoc. 12, 44–73 (2017).

    CAS  PubMed  Google Scholar 

  34. Segaliny, A. I. et al. Functional TCR T cell screening using single-cell droplet microfluidics. Lab Chip 18, 3733–3749 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lorenz, H. et al. High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS. Sens. Actuators A Phys. 64, 33–39 (1998).

    CAS  Google Scholar 

  36. Mazutis, L. et al. Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protoc. 8, 870–891 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Joung, J. et al. Genome-scale CRISPR–Cas9 knockout and transcriptional activation screening. Nat. Protoc. 12, 828–863 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Macosko et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Shifrut, E. et al. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell 175, 1958–1971 e1915 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sart, S., Ronteix, G., Jain, S., Amselem, G. & Baroud, C. N. Cell culture in microfluidic droplets. Chem. Rev. 122, 7061–7096 (2022).

    CAS  PubMed  Google Scholar 

  41. Abate, A. R., Chen, C. H., Agresti, J. J. & Weitz, D. A. Beating Poisson encapsulation statistics using close-packed ordering. Lab Chip 9, 2628–2631 (2009).

    CAS  PubMed  Google Scholar 

  42. Sukovich, D. J., Kim, S. C., Ahmed, N. & Abate, A. R. Bulk double emulsification for flow cytometric analysis of microfluidic droplets. Analyst 142, 4618–4622 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR–Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Clark, I. C., Thakur, R. & Abate, A. R. Concentric electrodes improve microfluidic droplet sorting. Lab Chip 18, 710–713 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Google Scholar 

  46. Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).

    PubMed  PubMed Central  Google Scholar 

  47. Lee, H. G., Lee, J. H., Flausino, L. E. & Quintana, F. J. Neuroinflammation: an astrocyte perspective. Sci. Transl. Med. 15, eadi7828 (2023).

    CAS  PubMed  Google Scholar 

  48. Everhart, M. B. et al. Duration and intensity of NF-kappaB activity determine the severity of endotoxin-induced acute lung injury. J. Immunol. 176, 4995–5005 (2006).

    CAS  PubMed  Google Scholar 

  49. Raval, N. et al. in Basic Fundamentals of Drug Delivery (Advances in Pharmaceutical Product Development and Research) (ed. Tekade, R. K.) 369–400 (Academic Press, 2019).

Download references

Acknowledgements

We thank all other Quintana lab members for helpful discussion related to this study. We thank the Harvard Medical School Microfabrication Core Facility for their assistance with microfabrication and access to photolithography equipment. RRID: Addgene_73632 was a gift from D. Root and J. Doench. RRID: Addgene_12260 was a gift from D. Trono. RRID: Addgene_8454 was a gift from B.Weinberg. This work was supported by grants NS102807, ES02530, ES029136, AI126880 from the National Institutes of Health; RG4111A1 and JF2161-A-5 from the NMSS; RSG-14-198-01-LIB from the American Cancer Society; and PA-1604-08459 from the International Progressive MS Alliance. M.A.W. was supported by National Institute of Neurological Disorders and Stroke, National Institute of Mental Health and National Cancer Institute (R01MH130458, R00NS114111, T32CA207201). I.C.C. was supported by K22AI152644 and DP2AI154435 from the National Institutes of Health. H.-G.L. was supported by a Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (2021R1A6A3A14039088).

Author information

Authors and Affiliations

Authors

Contributions

C.F.A., M.A.W., I.C.C., M.L., H.-G.L., Z.L. and F.J.Q. designed SPEAC-seq, performed experiments or analyzed data presented in this protocol. C.F.A., M.A.W. and F.J.Q. wrote the manuscript with input from coauthors. F.J.Q. directed and supervised the work presented in this paper.

Corresponding author

Correspondence to Francisco J. Quintana.

Ethics declarations

Competing interests

M.A.W., I.C.C. and F.J.Q. have filed a patent on SPEAC-seq. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Naomi Habib and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Wheeler, M. A. et al. Science 379, 1023–1030 (2023): https://doi.org/10.1126/science.abq4822

Supplementary information

Reporting Summary

Supplementary Data 1

CAD design for microfluidic co-encapsulator device.

Supplementary Data 2

CAD design for microfluidic sorter device.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faust Akl, C., Linnerbauer, M., Li, Z. et al. Droplet-based functional CRISPR screening of cell–cell interactions by SPEAC-seq. Nat Protoc 20, 440–461 (2025). https://doi.org/10.1038/s41596-024-01056-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41596-024-01056-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing