Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Validation and quantification of peptide antigens presented on MHCs using SureQuant

Abstract

Vaccines and immunotherapies that target peptide–major histocompatibility complexes (peptide–MHCs) have the potential to address multiple unmet medical needs in cancer and infectious disease. Designing vaccines and immunotherapies to target peptide–MHCs requires accurate identification of target peptides in infected or cancerous cells or tissue, and may require absolute or relative quantification to identify abundant targets and measure changes in presentation under different treatment conditions. Internal standard parallel reaction monitoring (also known as ‘SureQuant’) can be used to validate and/or quantify MHC peptides previously identified by using untargeted methods such as data-dependent acquisition. SureQuant MHC has three main use cases: (i) conclusive confirmation of the identities of putative MHC peptides via comparison with an internal synthetic stable isotope labeled (SIL) peptide standard; (ii) accurate relative quantification by using pre-formed heavy isotope-labeled peptide–MHC complexes (hipMHCs) containing SIL peptides as internal controls for technical variation; and (iii) absolute quantification of each target peptide by using different amounts of hipMHCs loaded with synthetic peptides containing one, two or three SIL amino acids to provide an internal standard curve. Absolute quantification can help determine whether the abundance of a peptide–MHC is sufficient for certain therapeutic modalities. SureQuant MHC therefore provides unique advantages for immunologists seeking to confidently validate antigenic targets and understand the dynamics of the MHC repertoire. After synthetic standards are ordered (3–4 weeks), this protocol can be carried out in 3–4 days and is suitable for individuals with mass spectrometry experience who are comfortable with customizing instrument methods.

key points

  • Target peptides presented on MHCs can be detected by using data-dependent mass spectrometry methods, but their presence needs to be validated and quantified to develop vaccines and immunotherapies to target peptide–MHCs.

  • SureQuant is a class of mass spectrometry methods in which parallel reaction monitoring is triggered by the detection of known stable isotope-labeled standards. Standards are prepared on the basis of the DDA findings and used in this MHC SureQuant protocol.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SureQuant method overview.
Fig. 2: SureQuant MHC applications overview.
Fig. 3: SureQuant instrument method layout.
Fig. 4: SureQuant MHC can be used to validate pathogen-derived MHC peptides.
Fig. 5: SureQuant enables quantification of MHC peptides with low sample input.
Fig. 6: SureQuant enables absolute quantification of MHC peptides.

Similar content being viewed by others

Data availability

Raw mass spectrometry data used in Fig. 4 are part of a dataset deposited to the PRIDE database with the dataset identifier PXD03784328,62. Skyline reports containing quantification information used in Figs. 5 and 6 are included in our GitHub repository at https://github.com/oleddy/SureQuant_MHC/ and in Supplementary Information, Software 2.

Code availability

All code is available at https://github.com/oleddy/SureQuant_MHC/ and provided in Supplementary Information, Software 2.

References

  1. Massarelli, E. et al. Combining immune checkpoint blockade and tumor-specific vaccine for patients with incurable human papillomavirus 16–related cancer. JAMA Oncol. 5, 67–73 (2019).

    Article  PubMed  Google Scholar 

  2. Weber, J. S. et al. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study. Lancet 403, 632–644 (2024).

    Article  CAS  PubMed  Google Scholar 

  3. Sette, A., Sidney, J. & Crotty, S. T cell responses to SARS-CoV-2. Annu. Rev. Immunol. 41, 343–73 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Bettencourt, P. et al. Identification of antigens presented by MHC for vaccines against tuberculosis. NPJ Vaccines 5, 2 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Karunakaran, K. P. et al. Immunoproteomic discovery of novel T cell antigens from the obligate intracellular pathogen Chlamydia. J. Immunol. 180, 2459–2465 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Mayer, R. L. et al. Immunopeptidomics-based design of mRNA vaccine formulations against Listeria monocytogenes. Nat. Commun. 13, 6075 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stopfer, L. E. et al. MEK inhibition enhances presentation of targetable MHC-I tumor antigens in mutant melanomas. Proc. Natl Acad. Sci. USA 119, e2208900119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jaeger, A. M. et al. Deciphering the immunopeptidome in vivo reveals new tumour antigens. Nature 607, 149–155 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hunt, D. F. et al. Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 255, 1261–1263 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Hunt, D. F. et al. Peptides presented to the immune system by the murine class II major histocompatibility complex molecule I-Ad. Science 256, 1817–1820 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Hunt, D. et al. In Methods in Protein Sequence Analysis (eds Imahori, K. & Sakiyama, F.) 127–133 (Springer, 1993).

  12. Stopfer, L. E., Mesfin, J. M., Joughin, B. A., Lauffenburger, D. A. & White, F. M. Multiplexed relative and absolute quantitative immunopeptidomics reveals MHC I repertoire alterations induced by CDK4/6 inhibition. Nat. Commun. 11, 2760 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chong, C., Coukos, G. & Bassani-Sternberg, M. Identification of tumor antigens with immunopeptidomics. Nat. Biotechnol. 40, 175–188 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Arieta, C. M. et al. The T-cell-directed vaccine BNT162b4 encoding conserved non-spike antigens protects animals from severe SARS-CoV-2 infection. Cell 186, 2392–2409.e21 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mohsen, M. O. et al. Bedside formulation of a personalized multi-neoantigen vaccine against mammary carcinoma. J. Immunother. Cancer 10, e002927 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sellars, M. C., Wu, C. J. & Fritsch, E. F. Cancer vaccines: building a bridge over troubled waters. Cell 185, 2770–2788 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Abelin, J. G. et al. Mass spectrometry profiling of HLA-associated peptidomes in mono-allelic cells enables more accurate epitope prediction. Immunity 46, 315–326 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sarkizova, S. et al. A large peptidome dataset improves HLA class I epitope prediction across most of the human population. Nat. Biotechnol. 38, 199–209 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Abelin, J. G. et al. Defining HLA-II ligand processing and binding rules with mass spectrometry enhances cancer epitope prediction. Immunity 51, 766–779.e17 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Creech, A. L. et al. The role of mass spectrometry and proteogenomics in the advancement of HLA epitope prediction. Proteomics 18, e1700259 (2018).

    Article  PubMed  Google Scholar 

  22. Gallien, S., Kim, S. Y. & Domon, B. Large-scale targeted proteomics using internal standard triggered-parallel reaction monitoring (IS-PRM). Mol. Cell. Proteom. 14, 1630–1644 (2015).

    Article  CAS  Google Scholar 

  23. Hassan, C. et al. Accurate quantitation of MHC-bound peptides by application of isotopically labeled peptide MHC complexes. J. Proteom. 109, 240–244 (2014).

    Article  CAS  Google Scholar 

  24. Stopfer, L. E. et al. Absolute quantification of tumor antigens using embedded MHC-I isotopologue calibrants. Proc. Natl Acad. Sci. USA 118, e2111173118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rodenko, B. et al. Generation of peptide–MHC class I complexes through UV-mediated ligand exchange. Nat. Protoc. 1, 1120–1132 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Faridi, P., Purcell, A. W. & Croft, N. P. In immunopeptidomics we need a sniper instead of a shotgun. Proteomics 18, e1700464 (2018).

    Article  PubMed  Google Scholar 

  27. Li, K., Jain, A., Malovannaya, A., Wen, B. & Zhang, B. DeepRescore: leveraging deep learning to improve peptide identification in immunopeptidomics. Proteomics 20, e1900334 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Leddy, O., White, F. M. & Bryson, B. D. Immunopeptidomics reveals determinants of Mycobacterium tuberculosis antigen presentation on MHC class I. eLife 12, e84070 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lichti, C. F., Vigneron, N., Clauser, K. R., Van Den Eynde, B. J. & Bassani-Sternberg, M. Navigating critical challenges associated with immunopeptidomics-based detection of proteasomal spliced peptide candidates. Cancer Immunol. Res. 10, 275–284 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Kacen, A. et al. Post-translational modifications reshape the antigenic landscape of the MHC I immunopeptidome in tumors. Nat. Biotechnol. 41, 239–251 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Prensner, J. R. et al. What can Ribo-Seq, immunopeptidomics, and proteomics tell us about the noncanonical proteome? Mol. Cell. Proteom. 22, 100631 (2023).

    Article  CAS  Google Scholar 

  32. Gessulat, S. et al. Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning. Nat. Methods 16, 509–518 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Zolg, D. P. et al. INFERYS rescoring: boosting peptide identifications and scoring confidence of database search results. Rapid Commun. Mass Spectrom. https://doi.org/10.1002/rcm.9128 (2021).

  34. Jaeger, A. M. et al. Rebalancing protein homeostasis enhances tumor antigen presentation. Clin. Cancer Res. 25, 6392–6405 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lowe, D. B. et al. TCR-like antibody drug conjugates mediate killing of tumor cells with low peptide/HLA targets. mAbs 9, 603–614 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ow, S. Y. et al. iTRAQ underestimation in simple and complex mixtures: “the good, the bad and the ugly”. J. Proteome Res. 8, 5347–5355 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Savitski, M. M. et al. Measuring and managing ratio compression for accurate iTRAQ/TMT quantification. J. Proteome Res. 12, 3586–3598 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Aggarwal, S., Talukdar, N. C. & Yadav, A. K. Advances in higher order multiplexing techniques in proteomics. J. Proteome Res. 18, 2360–2369 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Stone, J. D., Aggen, D. H., Schietinger, A., Schreiber, H. & Kranz, D. M. A sensitivity scale for targeting T cells with chimeric antigen receptors (CARs) and bispecific T-cell Engagers (BiTEs). Oncoimmunology 1, 863–873 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ankney, J. A., Muneer, A. & Chen, X. Relative and absolute quantitation in mass spectrometry–based proteomics. Annu. Rev. Anal. Chem. 11, 49–77 (2018).

    Article  CAS  Google Scholar 

  41. Curran, T. G., Zhang, Y., Ma, D. J., Sarkaria, J. N. & White, F. M. MARQUIS: a multiplex method for absolute quantification of peptides and posttranslational modifications. Nat. Commun. 6, 5924 (2015).

    Article  PubMed  Google Scholar 

  42. Kettenbach, A. N., Rush, J. & Gerber, S. A. Absolute quantification of protein and post-translational modification abundance with stable isotope–labeled synthetic peptides. Nat. Protoc. 6, 175–186 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stopfer, L. E., D’Souza, A. D. & White, F. M. 1,2,3, MHC: a review of mass-spectrometry-based immunopeptidomics methods for relative and absolute quantification of pMHCs. Immunooncol. Technol. 11, 100042 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. García-Santamarina, S. et al. Monitoring in vivo reversible cysteine oxidation in proteins using ICAT and mass spectrometry. Nat. Protoc. 9, 1131–1145 (2014).

    Article  PubMed  Google Scholar 

  45. Wang, Z., Rejtar, T., Zhou, Z. S. & Karger, B. L. Desulfurization of cysteine‐containing peptides resulting from sample preparation for protein characterization by mass spectrometry. Rapid Commun. Mass Spectrom. 24, 267–275 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Denkberg, G., Cohen, C. J., Segal, D., Kirkin, A. F. & Reiter, Y. Recombinant human single-chain MHC-peptide complexes made from E. coli by in vitro refolding: functional single-chain MHC-peptide complexes and tetramers with tumor associated antigens. Eur. J. Immunol. 30, 3522–3532 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Stopfer, L. E. et al. High-density, targeted monitoring of tyrosine phosphorylation reveals activated signaling networks in human tumors. Cancer Res. 81, 2495–2509 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kennedy, J. J. et al. Internal standard triggered-parallel reaction monitoring mass spectrometry enables multiplexed quantification of candidate biomarkers in plasma. Anal. Chem. 94, 9540–9547 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Croft, N. P. et al. Kinetics of antigen expression and epitope presentation during virus infection. PLoS Pathog. 9, e1003129 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sewell, A. K. Why must T cells be cross-reactive? Nat. Rev. Immunol. 12, 669–677 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Purcell, A. W., Ramarathinam, S. H. & Ternette, N. Mass spectrometry–based identification of MHC-bound peptides for immunopeptidomics. Nat. Protoc. 14, 1687–1707 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. MacLean, B. et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pino, L. K. et al. The Skyline ecosystem: informatics for quantitative mass spectrometry proteomics. Mass Spectrom. Rev. 39, 229–244 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. The UniProt Consortium. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 51, D523–D531 (2023).

    Article  Google Scholar 

  55. Behrendt, R., White, P. & Offer, J. Advances in Fmoc solid‐phase peptide synthesis. J. Pept. Sci. 22, 4–27 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Coin, I., Beyermann, M. & Bienert, M. Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat. Protoc. 2, 3247–3256 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Smith, P. K. et al. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85 (1985).

    Article  CAS  PubMed  Google Scholar 

  58. Walker, J. M. In The Protein Protocols Handbook 3rd edn (ed. Walker, J. M.) 11–15 (2009).

  59. Makarov, A. et al. Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Anal. Chem. 78, 2113–2120 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Brosch, M., Yu, L., Hubbard, T. & Choudhary, J. Accurate and sensitive peptide identification with Mascot Percolator. J. Proteome Res. 8, 3176–3181 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Andreatta, M., Alvarez, B. & Nielsen, M. GibbsCluster: unsupervised clustering and alignment of peptide sequences. Nucleic Acids Res. 45, W458–W463 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all the staff members of the Ragon Institute, the Koch Institute and MIT for the essential work that they do to make our research possible. We thank C. Flower and T. Tamir for helpful conversations, training and technical guidance. L.S. and F.M.W. initially developed SureQuant MHC in collaboration with ThermoFisher Scientific. ThermoFisher Scientific provided synthetic SIL peptide synthesis services and assisted in experimental design during development of the method. A. Leshinsky, H. Amoroso and R. Cook synthesized and purified some SIL peptide standards. Other SIL standards were purchased from Biosynth. We modified code written by C. Flower to plot MS/MS spectra. TAP1 knockout THP-1 cells and a corresponding parental wild-type line were generously provided by the laboratory of W. Garcia-Beltran. This work is supported by funding from the MIT Center for Precision Cancer Research and NIH grants U01 CA238720, U54 CA283114, 1R35GM142900 and R01A1022553. This work was performed in part in the Ragon Institute BSL3 core facility, which is supported by the NIH-funded Harvard University Center for AIDS Research (P30 AI060354). We thank Y. Xie and J. Boucau for managing the facility.

Author information

Authors and Affiliations

Authors

Contributions

O.L., Y.C. and M.R. performed experiments. O.L. and Y.C. wrote code and analyzed data. O.L., Y.C., S.S., B.D.B. and F.M.W. conceptualized and planned experiments. O.L., Y.C., R.A. and F.M.W. conceptualized and planned the manuscript. L.S., O.L., Y.C., D.H.K. and F.M.W. contributed to development of the protocol. O.L., Y.C. and E.C. wrote the manuscript. O.L., Y.C., R.A., L.S. and F.M.W. revised and edited the manuscript.

Corresponding author

Correspondence to Forest M. White.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Jennie Lill and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Leddy, O. et al. eLife 12, e84070 (2023): https://doi.org/10.7554/eLife.84070

Stopfer, L. E. et al. Proc. Natl. Acad. Sci. USA 118, e2111173118 (2021): https://doi.org/10.1073/pnas.2111173118

Supplementary information

Supplementary Software 1

Skyline templates for SureQuant MHC method building

Supplementary Software 2

Python code and example data for SureQuant MHC data analysis

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leddy, O., Cui, Y., Ahn, R. et al. Validation and quantification of peptide antigens presented on MHCs using SureQuant. Nat Protoc 20, 1196–1222 (2025). https://doi.org/10.1038/s41596-024-01076-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41596-024-01076-x

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer