Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

PEPPI-MS: gel-based sample pre-fractionation for deep top-down and middle-down proteomics

Abstract

Top-down analysis of intact proteins and middle-down analysis of proteins subjected to limited digestion require efficient detection of traces of proteoforms in samples, necessitating the reduction of sample complexity by thorough pre-fractionation of the proteome components in the sample. SDS–PAGE is a simple and inexpensive high-resolution protein-separation technique widely used in biochemical and molecular biology experiments. Although its effectiveness for sample preparation in bottom-up proteomics has been proven, establishing a method for highly efficient recovery of intact proteins from the gel matrix has long been a challenge for its implementation in top-down and middle-down proteomics. As a much-awaited solution to this problem, we present an experimental protocol for efficient proteoform fractionation from complex biological samples using passively eluting proteins from polyacrylamide gels as intact species for mass spectrometry (PEPPI-MS), a rapid method for extraction of intact proteins separated by SDS–PAGE. PEPPI-MS allows recovery of proteins below 100 kDa separated by SDS–PAGE in solution with a median efficiency of 68% within 10 min and, unlike conventional electroelution methods, requires no special equipment, contributing to a remarkably economical implementation. The entire protocol from electrophoresis to protein purification can be performed in <5 h. By combining the resulting PEPPI fraction with other protein-separation techniques, such as reversed-phase liquid chromatography and ion mobility techniques, multidimensional proteome separations for in-depth proteoform analysis can be easily achieved.

Key points

  • Sample pre-fractionation is essential to reduce complexity before top- and middle-down proteomics. PEPPI-MS uses passive-elution from SDS–PAGE to recover proteins below 100 kDa. The workflow can be applied to intact proteins (top-down proteomics) or to partially digested proteins (middle-down proteomics). Analysis on size-selected fractions (targeted middle-down proteomics) is also possible.

  • This protocol uses standard electrophoresis equipment and reagents, reducing costs and easing barriers to implementation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Rapid passive extraction of intact proteins in SDS–PAGE gels by PEPPI-MS.
Fig. 2: Sample pre-fractionation workflow for in-depth TDP or MDP by PEPPI-MS.
Fig. 3: Sample preparation with AnExSP.
Fig. 4: HCPE fractionation for in-depth TD proteomics.
Fig. 5: MD proteomics of HCPE by the global approach.

Similar content being viewed by others

Data availability

All MS raw data have been uploaded to the ProteomeXchange Consortium via the PRIDE partner repository with the accession PXD034353 (TDP data in Fig. 4)22 and PXD041358 (MDP data in Fig. 5)12.

References

  1. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Smith, L. M. & Kelleher, N. L. Proteoforms as the next proteomics currency. Science 359, 1106–1107 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schaffer, L. V. et al. Identification and quantification of proteoforms by mass spectrometry. Proteomics 19, e1800361 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brown, K. A., Melby, J. A., Roberts, D. S. & Ge, Y. Top-down proteomics: challenges, innovations, and applications in basic and clinical research. Expert Rev. Proteom. 17, 719–733 (2020).

    Article  CAS  Google Scholar 

  5. Su, T., Hollas, M. A. R., Fellers, R. T. & Kelleher, N. L. Identification of splice variants and isoforms in transcriptomics and proteomics. Annu. Rev. Biomed. Data Sci. 6, 357–376 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Drown, B. S. et al. Mapping the proteoform landscape of five human tissues. J. Proteome Res. 21, 1299–1310 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Adams, L. M. et al. Mapping the KRAS proteoform landscape in colorectal cancer identifies truncated KRAS4B that decreases MAPK signaling. J. Biol. Chem. 299, 102768 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Melani, R. D. et al. The Blood Proteoform Atlas: a reference map of proteoforms in human hematopoietic cells. Science 375, 411–418 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Compton, P. D., Zamdborg, L., Thomas, P. M. & Kelleher, N. L. On the scalability and requirements of whole protein mass spectrometry. Anal. Chem. 83, 6868–6874 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tsiatsiani, L. & Heck, A. J. Proteomics beyond trypsin. FEBS J. 282, 2612–2626 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Sidoli, S. & Garcia, B. A. Middle-down proteomics: a still unexploited resource for chromatin biology. Expert Rev. Proteom. 14, 617–626 (2017).

    Article  CAS  Google Scholar 

  12. Takemori, A. et al. GeLC-FAIMS-MS workflow for in-depth middle-down proteomics. Proteomics 24, e2200431 (2024).

    Article  PubMed  Google Scholar 

  13. Guo, Y., Cupp‐Sutton, K. A., Zhao, Z., Anjum, S. & Wu, S. Multidimensional separations in top–down proteomics. Anal. Sci. Adv. 4, 181–203 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nickerson, J. L. et al. Recent advances in top-down proteome sample processing ahead of MS analysis. Mass Spectrom. Rev. 42, 457–495 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  PubMed  Google Scholar 

  16. Pflieger, D. et al. Systematic identification of mitochondrial proteins by LC-MS/MS. Anal. Chem. 74, 2400–2406 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Schirle, M., Heurtier, M. A. & Kuster, B. Profiling core proteomes of human cell lines by one-dimensional PAGE and liquid chromatography-tandem mass spectrometry. Mol. Cell. Proteom. 2, 1297–1305 (2003).

    Article  CAS  Google Scholar 

  18. Takemori, A. et al. BAC-DROP: rapid digestion of proteome fractionated via dissolvable polyacrylamide gel electrophoresis and its application to bottom-up proteomics workflow. J. Proteome Res. 20, 1535–1543 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Takemori, A. et al. PEPPI-MS: polyacrylamide-gel-based prefractionation for analysis of intact proteoforms and protein complexes by mass spectrometry. J. Proteome Res. 19, 3779–3791 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Takemori, A. & Takemori, N. Sample preparation for structural mass spectrometry via polyacrylamide gel electrophoresis. Methods Enzymol. 682, 187–210 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Takemori, N. & Takemori, A. In-depth structural proteomics integrating mass spectrometry and polyacrylamide gel electrophoresis. Front. Anal. Sci. 2, 1107183 (2023).

    Article  Google Scholar 

  22. Takemori, A., Kaulich, P. T., Cassidy, L., Takemori, N. & Tholey, A. Size-based proteome fractionation through polyacrylamide gel electrophoresis combined with LC-FAIMS-MS for in-depth top-down proteomics. Anal. Chem. 94, 12815–12821 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Le Maire, M., Deschamps, S., Møller, J. V., Le Caer, J. P. & Rossier, J. Electrospray ionization mass spectrometry on hydrophobic peptides electroeluted from sodium dodecyl sulfate-polyacrylamide gel electrophoresis application to the topology of the sarcoplasmic reticulum Ca2+ ATPase. Anal. Biochem. 214, 50–57 (1993).

    Article  PubMed  Google Scholar 

  24. Schuhmacher, M., Glocker, M. O., Wunderlin, M. & Przybylski, M. Direct isolation of proteins from sodium dodecyl sulfate-polyacrylamide gel electrophoresis and analysis by electrospray-ionization mass spectrometry. Electrophoresis 17, 848–854 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Seelert, H. & Krause, F. Preparative isolation of protein complexes and other bioparticles by elution from polyacrylamide gels. Electrophoresis 29, 2617–2636 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Cohen, S. L. & Chait, B. T. Mass spectrometry of whole proteins eluted from sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels. Anal. Biochem. 247, 257–267 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Claverol, S., Burlet-Schiltz, O., Gairin, J. E. & Monsarrat, B. Characterization of protein variants and post-translational modifications: ESI-MSn analyses of intact proteins eluted from polyacrylamide gels. Mol. Cell. Proteom. 2, 483–493 (2003).

    Article  CAS  Google Scholar 

  29. Fulcher, J. M. et al. Enhancing top-down proteomics of brain tissue with FAIMS. J. Proteome Res. 20, 2780–2795 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reed, B. D. et al. Real-time dynamic single-molecule protein sequencing on an integrated semiconductor device. Science 378, 186–192 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Leney, A. C. & Heck, A. J. R. Native mass spectrometry: what is in the name? J. Am. Soc. Mass Spectrom. 28, 5–13 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Zhou, M. et al. Higher-order structural characterisation of native proteins and complexes by top-down mass spectrometry. Chem. Sci. 11, 12918–12936 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wittig, I. & Schagger, H. Features and applications of blue-native and clear-native electrophoresis. Proteomics 8, 3974–3990 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Loo, R. R., Dales, N. & Andrews, P. C. Surfactant effects on protein structure examined by electrospray ionization mass spectrometry. Protein Sci. 3, 1975–1983 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Meng, F. et al. Processing complex mixtures of intact proteins for direct analysis by mass spectrometry. Anal. Chem. 74, 2923–2929 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Tran, J. C. & Doucette, A. A. Gel-eluted liquid fraction entrapment electrophoresis: an electrophoretic method for broad molecular weight range proteome separation. Anal. Chem. 80, 1568–1573 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Tran, J. C. & Doucette, A. A. Multiplexed size separation of intact proteins in solution phase for mass spectrometry. Anal. Chem. 81, 6201–6209 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Witkowski, C. & Harkins, J. Using the GELFREE 8100 Fractionation System for molecular weight-based fractionation with liquid phase recovery. J. Vis. Exp. 2009, 1842 (2009).

    Google Scholar 

  39. Cai, W. et al. Top-down proteomics of large proteins up to 223 kDa enabled by serial size exclusion chromatography strategy. Anal. Chem. 89, 5467–5475 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tucholski, T. et al. A top-down proteomics platform coupling serial size exclusion chromatography and Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 91, 3835–3844 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cristobal, A. et al. Toward an optimized workflow for middle-down proteomics. Anal. Chem. 89, 3318–3325 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bonaventura, C., Bonaventura, J., Stevens, R. & Millington, D. Acrylamide in polyacrylamide gels can modify proteins during electrophoresis. Anal. Biochem. 222, 44–48 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Strupat, K., Karas, M., Hillenkamp, F., Eckerskorn, C. & Lottspeich, F. Matrix-assisted laser desorption ionization mass spectrometry of proteins electroblotted after polyacrylamide gel electrophoresis. Anal. Chem. 66, 464–470 (1994).

    Article  CAS  Google Scholar 

  44. Wessel, D. & Flugge, U. I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal. Biochem. 138, 141–143 (1984).

    Article  CAS  PubMed  Google Scholar 

  45. Takemori, A., Kawashima, Y. & Takemori, N. Bottom-up/cross-linking mass spectrometry via simplified sample processing on anion-exchange solid-phase extraction spin column. Chem. Commun. 58, 775–778 (2022).

    Article  CAS  Google Scholar 

  46. Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Kaulich, P. T., Cassidy, L., Winkels, K. & Tholey, A. Improved identification of proteoforms in top-down proteomics using FAIMS with internal CV stepping. Anal. Chem. 94, 3600–3607 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Fornelli, L. et al. Advancing top-down analysis of the human proteome using a benchtop quadrupole-orbitrap mass spectrometer. J. Proteome Res. 16, 609–618 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Shliaha, P. V. et al. Maximizing sequence coverage in top-down proteomics by automated multimodal gas-phase protein fragmentation. Anal. Chem. 90, 12519–12526 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Doucette, A. A., Vieira, D. B., Orton, D. J. & Wall, M. J. Resolubilization of precipitated intact membrane proteins with cold formic acid for analysis by mass spectrometry. J. Proteome Res. 13, 6001–6012 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Chambers, M. C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jeong, K. et al. FLASHDeconv: ultrafast, high-quality feature deconvolution for top-down proteomics. Cell Syst. 10, 213–218.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Kaulich, P. T. et al. MSTopDiff: a tool for the visualization of mass shifts in deconvoluted top-down proteomics data for the database-independent detection of protein modifications. J. Proteome Res. 21, 20–29 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Tabb, D. L. et al. Comparing top-down proteoform identification: deconvolution, PrSM overlap, and PTM detection. J. Proteome Res. 22, 2199–2217 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kou, Q., Xun, L. & Liu, X. TopPIC: a software tool for top-down mass spectrometry-based proteoform identification and characterization. Bioinformatics 32, 3495–3497 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kline, J. T. et al. Orbitrap mass spectrometry and high-field asymmetric waveform ion mobility spectrometry (FAIMS) enable the in-depth analysis of human serum proteoforms. J. Proteome Res. 22, 3418–3426 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI 22KK0077 and 23K04963 (to N.T.) and the Deutsche Forschungsgemeinschaft (DFG), within the Cluster of Excellence ‘Precision Medicine in Inflammation (PMI)’-RTF-V (to A. Tholey). The authors thank Erika Teraoka for editing and reviewing this manuscript for use of the English language and helpful discussion.

Author information

Authors and Affiliations

Authors

Contributions

Protocols for PEPPI-MS and AnExSP were developed by A. Takemori and N.T.; protocols for LC-FAIMS-MS analysis were developed by P.T.K. and A. Tholey.

Corresponding author

Correspondence to Nobuaki Takemori.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Si Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Takemori, A. et al. J. Proteome Res. 19, 3779–3791 (2020): https://doi.org/10.1021/acs.jproteome.0c00303

Takemori, A. et al. Anal. Chem. 94, 12815–12821 (2022): https://doi.org/10.1021/acs.analchem.2c02777

Takemori, A. et al. Proteomics 24, e2200431 (2024): https://doi.org/10.1002/pmic.202200431

Takemori, A. et al. Chem. Commun. 58, 775–778 (2022): https://doi.org/10.1039/d1cc05529a

Supplementary information

Supplementary Information

Supplementary Figures 1–3 and Supplementary Table 1

Reporting Summary

Supplementary Video 1

PEPPI-MS: gel fractionation

Supplementary Video 2

PEPPI-MS: gel homogenization no. 1

Supplementary Video 3

PEPPI-MS: gel homogenization no. 2

Supplementary Video 4

PEPPI-MS: passive extraction

Supplementary Video 5

AX StageTip

Supplementary Video 6

AnExSP

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takemori, A., Kaulich, P.T., Tholey, A. et al. PEPPI-MS: gel-based sample pre-fractionation for deep top-down and middle-down proteomics. Nat Protoc 20, 1413–1438 (2025). https://doi.org/10.1038/s41596-024-01100-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41596-024-01100-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing