Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A guide to building a low-cost centrifuge force microscope module for single-molecule force experiments

Abstract

The ability to apply controlled forces to individual molecules or molecular complexes and observe their behaviors has led to many important discoveries in biology. Instruments capable of probing single-molecule forces typically cost >US$100,000, limiting the use of these techniques. The centrifuge force microscope (CFM) is a low-cost and easy-to-use instrument that enables high-throughput single-molecule studies. By combining the imaging capabilities of a microscope with the force application of a centrifuge, the CFM enables the simultaneous probing of hundreds to thousands of single-molecule interactions using tethered particles. Here we present a comprehensive set of instructions for building a CFM module that fits within a commercial benchtop centrifuge. The CFM module uses a 3D-printed housing, relies on off-the-shelf optical and electrical components, and can be built for less than US$1,000 in about 1 day. We also provide detailed instructions for setting up and running an experiment to measure force-dependent shearing of a short DNA duplex, as well as the software for CFM control and data analysis. The protocol is suitable for users with basic experience in analytical biochemistry and biophysics. The protocol enables the use of CFM-based experiments and may facilitate access to the single-molecule research field.

Key points

  • The protocol covers the build and setup of a centrifuge force microscope that uses 3D-printed components and can be accommodated within an existing centrifuge, and the experimental procedure to probe the force-dependent dissociation of a short DNA duplex in the low piconewton force range.

  • Alternative methods include optical and magnetic tweezers, atomic force microscopy and acoustic forces, fluid flow or DNA-based probes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual overview of the CFM and its basic elements.
Fig. 2: Visual overview of the main steps of the procedure.
Fig. 3: Details and construction of the CFM module.
Fig. 4: Preparing materials for a CFM experiment.
Fig. 5: Running the experiment and analyzing data.

Similar content being viewed by others

Data availability

The main data discussed in this protocol (including raw source data that appear in Figs. 2 and 5) are available in the supporting primary research paper (https://doi.org/10.1038/s41467-023-36373-8). As mentioned in the data availability statement of the primary research paper, the raw videos are too large to be publicly shared (~1 TB) but are available for research purposes from the corresponding author upon reasonable request.

Code availability

Analysis software is available in the supporting primary research paper (https://doi.org/10.1038/s41467-023-36373-8). Our image acquisition software in LabView is provided in Supplementary Files.

References

  1. Deniz, A. A., Mukhopadhyay, S. & Lemke, E. A. Single-molecule biophysics: at the interface of biology, physics and chemistry. J. R. Soc. Interface 5, 15–45 (2008).

    Article  CAS  Google Scholar 

  2. Miller, H. et al. Single-molecule techniques in biophysics: a review of the progress in methods and applications. Rep. Prog. Phys. 81, 024601 (2017).

    Article  Google Scholar 

  3. Sweeney, H. L. & Houdusse, A. Structural and functional insights into the myosin motor mechanism. Annu. Rev. Biophys. 39, 539–557 (2010).

    Article  CAS  Google Scholar 

  4. Mohapatra, S. et al. Single-molecule analysis and engineering of DNA motors. Chem. Rev. 120, 36–78 (2019).

    Article  Google Scholar 

  5. Seidel, R. & Dekker, C. Single-molecule studies of nucleic acid motors. Curr. Opin. Struct. Biol. 17, 80–86 (2007).

    Article  CAS  Google Scholar 

  6. Woodside, M. T. & Block, S. M. Reconstructing folding energy landscapes by single-molecule force spectroscopy. Annu. Rev. Biophys. 43, 19–39 (2014).

    Article  CAS  PubMed Central  Google Scholar 

  7. Petrosyan, R., Narayan, A. & Woodside, M. T. Single-molecule force spectroscopy of protein folding. J. Mol. Biol. 433, 167207 (2021).

    Article  CAS  Google Scholar 

  8. Mukherjee, S. et al. Single-molecule optical tweezers as a tool for delineating the mechanisms of protein-processing mechanoenzymes. ACS Omega 8, 87–97 (2022).

    Article  PubMed Central  Google Scholar 

  9. Camunas-Soler, J., Ribezzi-Crivellari, M. & Ritort, F. Elastic properties of nucleic acids by single-molecule force spectroscopy. Annu. Rev. Biophys. 45, 65–84 (2016).

    Article  CAS  Google Scholar 

  10. Yodh, J. G., Schlierf, M. & Ha, T. Insight into helicase mechanism and function revealed through single-molecule approaches. Q. Rev. Biophys. 43, 185–217 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  11. Smith, D. E. Single-molecule studies of viral DNA packaging. Curr. Opin. Virol. 1, 134–141 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  12. Dulin, D. et al. Studying genomic processes at the single-molecule level: introducing the tools and applications. Nat. Rev. Genet. 14, 9–22 (2013).

    Article  CAS  Google Scholar 

  13. Evans, E. Probing the relation between force—lifetime—and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 30, 105–128 (2001).

    Article  CAS  Google Scholar 

  14. Puchner, E. M. & Gaub, H. E. Single-molecule mechanoenzymatics. Annu. Rev. Biophys. 41, 497–518 (2012).

    Article  CAS  Google Scholar 

  15. Yusko, E. C. & Asbury, C. L. Force is a signal that cells cannot ignore. Mol. Biol. Cell 25, 3717–3725 (2014).

    Article  PubMed Central  Google Scholar 

  16. Eckels, E. C. et al. The work of titin protein folding as a major driver in muscle contraction. Annu. Rev. Physiol. 80, 327–351 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  17. Neuman, K. C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491–505 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  18. Moffitt, J. R. et al. Recent advances in optical tweezers. Annu. Rev. Biochem. 77, 205–228 (2008).

    Article  CAS  Google Scholar 

  19. Polimeno, P. et al. Optical tweezers and their applications. J. Quant. Spectrosc. Radiat. Transf. 218, 131––150 (2018).

    Article  Google Scholar 

  20. Bustamante, C. J. et al. Optical tweezers in single-molecule biophysics. Nat. Rev. Methods Prim. 1, 25 (2021).

    Article  CAS  Google Scholar 

  21. De Vlaminck, I. & Dekker, C. Recent advances in magnetic tweezers. Annu. Rev. Biophys. 41, 453–472 (2012).

    Article  Google Scholar 

  22. Kilinc, D. & Lee, G. U. Advances in magnetic tweezers for single molecule and cell biophysics. Integr. Biol. 6, 27–34 (2014).

    Article  CAS  Google Scholar 

  23. Choi, H.-K. et al. High-resolution single-molecule magnetic tweezers. Annu. Rev. Biochem. 91, 33–59 (2022).

    Article  CAS  Google Scholar 

  24. Engel, A. & Müller, D. J. Observing single biomolecules at work with the atomic force microscope. Nat. Struct. Biol. 7, 715–718 (2000).

    Article  CAS  Google Scholar 

  25. Hinterdorfer, P. & Dufrêne, Y. F. Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods 3, 347–355 (2006).

    Article  CAS  Google Scholar 

  26. Parot, P. et al. Past, present and future of atomic force microscopy in life sciences and medicine. J. Mol. Recogniti. 20, 418–431 (2007).

    Article  CAS  Google Scholar 

  27. Ma, L. & Cockroft, S. L. Biological nanopores for single‐molecule biophysics. ChemBioChem 11, 25–34 (2010).

    Article  CAS  Google Scholar 

  28. Sitters, G. et al. Acoustic force spectroscopy. Nat. Methods 12, 47–50 (2015).

    Article  CAS  Google Scholar 

  29. Gourier, C. et al. A nanospring named erythrocyte. The biomembrane force probe. Cell. Mol. Bioeng. 1, 263–275 (2008).

    Article  Google Scholar 

  30. Nickels, P. C. et al. Molecular force spectroscopy with a DNA origami-based nanoscopic force clamp. Science 354, 305–307 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  31. Kim, S. et al. Multiplexed single-molecule assay for enzymatic activity on flow-stretched DNA. Nat. Methods 4, 397–399 (2007).

    Article  CAS  Google Scholar 

  32. Akbari, E. et al. Low cost and massively parallel force spectroscopy with fluid loading on a chip. Nat. Commun. 13, 6800 (2022).

    Article  CAS  PubMed Central  Google Scholar 

  33. Halvorsen, K. & Wong, W. P. Massively parallel single-molecule manipulation using centrifugal force. Biophys. J. 98, L53––L55 (2010).

    Article  PubMed Central  Google Scholar 

  34. Yang, D. et al. Multiplexed single-molecule force spectroscopy using a centrifuge. Nat. Commun. 7, 11026 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  35. Hoang, T., Patel, D. S. & Halvorsen, K. A wireless centrifuge force microscope (CFM) enables multiplexed single-molecule experiments in a commercial centrifuge. Rev. Sci. Instrum. 87, 083705 (2016).

    Article  Google Scholar 

  36. Abraham Punnoose, J. et al. Wi-Fi live-streaming centrifuge force microscope for benchtop single-molecule experiments. Biophys. J. 119, 2231–2239 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  37. Abraham Punnoose, J. et al. High-throughput single-molecule quantification of individual base stacking energies in nucleic acids. Nat. Commun. 14, 631 (2023).

    Article  CAS  PubMed Central  Google Scholar 

  38. Luo, Y. et al. Resolving molecular heterogeneity with single-molecule centrifugation. J. Am. Chem. Soc. 145, 3276–3282 (2023).

    Article  CAS  PubMed Central  Google Scholar 

  39. Kirkness, M. W. H. & Forde, N. R. Single-molecule assay for proteolytic susceptibility: force-induced collagen destabilization. Biophys. J. 114, 570–576 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  40. LeFevre, T. B. et al. Measuring colloid–surface interaction forces in parallel using fluorescence centrifuge force microscopy. Soft Matter 17, 6326––6336 (2021).

    Article  Google Scholar 

  41. Kou, L. et al. Real‐time parallel 3D multiple particle tracking with single molecule centrifugal force microscopy. J. Microsc. 273, 178–188 (2019).

    Article  CAS  Google Scholar 

  42. Heinrich, V. et al. Imaging biomolecular interactions by fast three-dimensional tracking of laser-confined carrier particles. Langmuir 24, 1194–1203 (2008).

    Article  CAS  Google Scholar 

  43. Rieu, M. et al. Parallel, linear, and subnanometric 3D tracking of microparticles with stereo darkfield interferometry. Sci. Adv. 7, eabe3902 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  44. De Vlaminck, I. et al. Highly parallel magnetic tweezers by targeted DNA tethering. Nano Lett. 11, 5489–5493 (2011).

    Article  Google Scholar 

  45. De Vlaminck, I. et al. Magnetic forces and DNA mechanics in multiplexed magnetic tweezers. PLoS One 7, e41432 (2012).

    Article  CAS  PubMed Central  Google Scholar 

  46. Ribeck, N. & Saleh, O. A. Multiplexed single-molecule measurements with magnetic tweezers. Rev. Sci. Instrum. 79, 094301 (2008).

    Article  Google Scholar 

  47. Agarwal, R. & Duderstadt, K. E. Multiplex flow magnetic tweezers reveal rare enzymatic events with single molecule precision. Nat. Commun. 11, 4714 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  48. Kamsma, D. & Wuite, G. J. L. Single-molecule measurements using acoustic force spectroscopy (AFS). In Single Molecule Analysis (ed. Peterman, E. et al.) 341–351 (Humana, 2018); https://doi.org/10.1007/978-1-4939-7271-5_18

  49. Ott, W. et al. Single-molecule force spectroscopy on polyproteins and receptor–ligand complexes: the current toolbox. J. Struct. Biol. 197, 3–12 (2017).

    Article  CAS  Google Scholar 

  50. Halvorsen, K., Schaak, D. & Wong, W. P. Nanoengineering a single-molecule mechanical switch using DNA self-assembly. Nanotechnology 22, 494005 (2011).

    Article  Google Scholar 

  51. Yang, D. & Wong, W. P. Repurposing a benchtop centrifuge for high-throughput single-molecule force spectroscopy. In Single Molecule Analysis (ed. Peterman, E. et al.) 353–366 (Humana, 2018); https://doi.org/10.1007/978-1-4939-7271-5_19

  52. Hoang, T., Moskwa, N. & Halvorsen, K. A ‘smart’tube holder enables real-time sample monitoring in a standard lab centrifuge. PLoS ONE 13, e0195907 (2018).

    Article  PubMed Central  Google Scholar 

  53. Dudko, O. K. Decoding the mechanical fingerprints of biomolecules. Q. Rev. Biophys. 49, e3 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank A. R. Chandrasekaran for useful conversations about the manuscript and figures, and B. Halvorsen for feedback to improve the CFM build instructions. Research reported in this publication was supported by the National Institutes of Health (NIH) through the National Institute of General Medical Sciences under awards R35GM124720 to K.H. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Contributions

This protocol was conceived and planned by K.H. All authors were involved in different aspects of protocol development, primarily J.A.P. for experiment design and data analysis, C.S.K. for experiment preparation and running, A.H. for electrical design and 3D modeling, and K.H. for mechanical design and assembly. The main text was written by J.A.P. and K.H. with input and editing from all authors.

Corresponding author

Correspondence to Ken Halvorsen.

Ethics declarations

Competing interests

K.H. has several issued patents and pending patent applications related to the CFM and has previously earned licensing royalties related to CFM.

Peer review

Peer review information

Nature Protocols thanks Hans Bergal, Wesley Wong and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Abraham Punnoose, J. et al. High-throughput single-molecule quantification of individual base stacking energies in nucleic acids. Nat. Commun. 14.1, 631 (2023): https://doi.org/10.1038/s41467-023-36373-8

Abraham Punnoose, J. et al. Wi-Fi live-streaming centrifuge force microscope for benchtop single-molecule experiments. Biophys. J. 119.11, 2231–2239 (2020): https://doi.org/10.1016/j.bpj.2020.10.017

Supplementary information

Supplementary Information

Supplementary Notes 1–4, Figs. 1 and 2, Tables 1 and 2.

Reporting Summary

Supplementary Video 1

Video tutorial Steps 5–22.

Supplementary Video 2

Video tutorial Steps 23–38.

Supplementary Files

Fusion 3D model, individual .stl 3D models for printing, LabVIEW control software, MATLAB analysis code.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abraham Punnoose, J., Hayden, A., Kam, C.S. et al. A guide to building a low-cost centrifuge force microscope module for single-molecule force experiments. Nat Protoc 20, 1951–1975 (2025). https://doi.org/10.1038/s41596-024-01102-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41596-024-01102-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing