Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Live-cell synthesis of biocompatible quantum dots

Abstract

Quantum dots (QDs) exhibit fluorescence properties with promising prospects for biomedical applications; however, the QDs synthesized in organic solvents shows poor biocompatibility, limiting their use in biological systems. We developed an approach for synthesizing QDs in live cells by coupling a series of intracellular metabolic pathways in a precise spatial and temporal sequence. We have validated this approach in yeast (Saccharomyces cerevisiae), Staphylococcus aureus, Michigan Cancer Foundation-7 (MCF-7) and Madin-Darby canine kidney (MDCK) cells. The intracellularly synthesized QDs are inherently stable and biocompatible, making them suitable for the direct in situ labeling of cells and cell-derived vesicles. Here, we provide an optimized workflow for the live-cell synthesis of QDs by using S. cerevisiae, S. aureus or MCF-7 cells. In addition, we detail a cell-free aqueous synthetic system (quasi-biosynthesis) containing enzymes, electrolytes, peptides and coenzymes, which closely mimics the intracellular synthetic conditions used in our cell culture system. In this solution, we synthesize biocompatible ultrasmall QDs that are easier to purify and characterize than those synthesized in cells. The live-cell-synthesized QDs can be used for bioimaging and microvesicle detection, whereas the quasi-biosynthesized QDs are suitable for applications such as biodetection, biolabeling and real-time imaging. The procedure can be completed in 3–4 d for live-cell QD synthesis and 2 h for the quasi-biosynthesis of QDs. The procedure is suitable for users with expertise in chemistry, biology, materials science and synthetic biology. This approach encourages interested researchers to engage in the field of QDs and develop further biomedical applications.

Key points

  • In yeast, selenium and cadmium are supplied to the culture, where they are taken up by cells, to intracellularly generate CdSe QDs by the converging of glutathione/NADPH-involved selenite reduction and Cd2+ detoxication pathways.

  • The live-cell synthesis of QDs can be replicated in an aqueous solution that closely mimics the intracellular environment containing enzymes, electrolytes, peptides, coenzymes and metal ions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metabolic pathways in ARLCS of fluorescent QDs in live cells.
Fig. 2: Schematic overview of the workflow for live-cell synthesis of QDs and their applications.
Fig. 3: Schematic overview of the workflow for quasi-biological synthesis of QDs.
Fig. 4: Apparatus setup for the quasi-biological synthesis of Ag2Se QDs.
Fig. 5: Synthesis and purification of QDs in live yeast cells.
Fig. 6: Fluorescent nanoprobes for detection of virus.
Fig. 7: Live-cell synthesis of QDs for in situ labeling of MVs.
Fig. 8: Characterization of Ag2Se QDs.
Fig. 9: ECL of Ag2Se QDs for detection of dopamine.
Fig. 10: Characterization of Ag2Se@Mn QDs.
Fig. 11: Ag2Se@Mn QDs for labeling and real-time tracking of MVs.

Similar content being viewed by others

Data availability

Source data for the figures in this protocol are available in the listed supporting primary research articles: references3,5,6,23,24,28,34,45. Further parameters or details of the experiments are available from the corresponding author upon reasonable request.

References

  1. Liu, S. L. et al. Single-virus tracking: from imaging methodologies to virological applications. Chem. Rev. 120, 1936–1979 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  2. Liu, A. A. et al. Artificially regulated synthesis of nanocrystals in live cells. Natl Sci. Rev. 9, nwab162 (2022).

    Article  CAS  Google Scholar 

  3. Cui, R. et al. Living yeast cells as a controllable biosynthesizer for fluorescent quantum dots. Adv. Funct. Mater. 19, 2359–2364 (2009).

    Article  CAS  Google Scholar 

  4. Luo, Q. Y. et al. Nanomechanical analysis of yeast cells in CdSe quantum dot biosynthesis. Small 10, 699–704 (2013).

    Article  Google Scholar 

  5. Li, Y. et al. Mechanism-oriented controllability of intracellular quantum dots formation: the role of glutathione metabolic pathway. ACS Nano 7, 2240–2248 (2013).

    Article  CAS  Google Scholar 

  6. Xiong, L. H. et al. Uniform fluorescent nanobioprobes for pathogen detection. ACS Nano 8, 5116–5124 (2014).

    Article  CAS  PubMed Central  Google Scholar 

  7. Wu, C. Q. et al. Intracellular redox potential-driven live-cell synthesis of CdSe quantum dots in Staphylococcus aureus. Sci. China Chem. 67, 990–999 (2023).

    Article  Google Scholar 

  8. Li, X. et al. Thioredoxin pathway regulated live-cell synthesis of CdSe quantum dots in Saccharomyces cerevisiae. Sci. China Chem. 67, 3851–3860 (2024).

    Article  CAS  Google Scholar 

  9. Zhang, R. et al. ATP synthesis in the energy metabolism pathway: a new perspective for manipulating CdSe quantum dots biosynthesized in Saccharomyces cerevisiae. Int. J. Nanomed. 12, 3865–3879 (2017).

    Article  CAS  Google Scholar 

  10. Shao, M. et al. Living cell synthesis of CdSe quantum dots: manipulation based on the transformation mechanism of intracellular Se-precursors. Nano Res. 11, 2498–2511 (2018).

    Article  CAS  Google Scholar 

  11. Xiong, L. H. et al. Harnessing intracellular biochemical pathways for in vitro synthesis of designer Tellurium nanorods. Small 11, 5416–5422 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  12. Bao, H., Hao, N., Yang, Y. & Zhao, D. Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano Res. 3, 481–489 (2010).

    Article  CAS  Google Scholar 

  13. Wang, X. M. et al. Highly efficient near-infrared photothermal antibacterial membrane with incorporated biogenic CuSe nanoparticles. Chem. Eng. J. 405, 126711 (2021).

    Article  CAS  Google Scholar 

  14. Yamaguchi, T. et al. Synthesis of CdSe quantum dots using Fusarium oxysporum. Materials 9, 855 (2016).

    Article  PubMed Central  Google Scholar 

  15. Tian, L. J. et al. Biogenic quantum dots for sensitive, label-free detection of mercury ions. ACS Appl. Bio Mater. 2, 2661–2667 (2019).

    Article  CAS  Google Scholar 

  16. Chen, M. T. et al. Spatially directed biosynthesis of quantum dots via spidroin templating in Escherichia coli. Angew. Chem. Int. Ed. Engl. 61, e202214177 (2022).

    Article  CAS  Google Scholar 

  17. Kang, S. H. et al. Microbial synthesis of CdS nanocrystals in genetically engineered E. coli. Angew. Chem. Int. Ed. Engl. 47, 5186–5189 (2008).

    Article  CAS  Google Scholar 

  18. Li, D. B. et al. Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm. Sci. Rep. 4, 3735 (2014).

    Article  PubMed Central  Google Scholar 

  19. Lin, T. Y. et al. Rapid biosynthesis of fluorescent CdSe QDs in Bacillus licheniformis and correlative bacterial antibiotic change assess during the process. Luminescence 36, 621–630 (2020).

    Article  Google Scholar 

  20. Yan, Z. Y. et al. A sensitive and simple method for detecting Cu2+ in plasma using fluorescent Bacillus amyloliquefaciens containing intracellularly biosynthesized CdSe quantum dots. Enzym. Microb. Tech. 119, 37–44 (2018).

    Article  CAS  Google Scholar 

  21. Cao, K. et al. The biosynthesis of cadmium selenide quantum dots by Rhodotorula mucilaginosa PA-1 for photocatalysis. Biochem. Eng. J. 156, 107497 (2020).

    Article  CAS  Google Scholar 

  22. Tian, L. J. et al. A sustainable biogenic route to synthesize quantum dots with tunable fluorescence properties for live cell imaging. Biochem. Eng. J. 124, 130–137 (2017).

    Article  CAS  Google Scholar 

  23. Xiong, L. H. et al. Designer cell-self-implemented labeling of microvesicles in situ with the intracellular-synthesized quantum dots. Sci. China Chem. 63, 448–453 (2020).

    Article  CAS  Google Scholar 

  24. Hu, Y. et al. In-situ synthesis of quantum dots in the nucleus of live cells. Natl Sci. Rev. 11, nwae021 (2024).

    Article  CAS  PubMed Central  Google Scholar 

  25. Cui, Y. H. et al. Synthesis of CdS1−xSex quantum dots in a protozoa Tetrahymena pyriformis. Appl. Microbiol. Biotechnol. 103, 973–980 (2018).

    Article  Google Scholar 

  26. Cui, Y. H. et al. Solar-energy-facilitated CdSxSe1−x quantum dot bio-assembly in Escherichia coli and Tetrahymena pyriformis. J. Mater. Chem. A 7, 6205–6212 (2019).

    Article  CAS  Google Scholar 

  27. Li, L. L. et al. Selenium stimulates cadmium detoxification in Caenorhabditis elegans through thiols-mediated nanoparticles formation and secretion. Environ. Sci. Technol. 53, 2344–2352 (2019).

    Article  Google Scholar 

  28. Gu, Y. P. et al. Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. J. Am. Chem. Soc. 134, 79–82 (2012).

    Article  CAS  Google Scholar 

  29. Medintz, I. L., Uyeda, H. T., Goldman, E. R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005).

    Article  CAS  Google Scholar 

  30. Smyth, T. et al. Surface functionalization of exosomes using click chemistry. Bioconjug. Chem. 25, 1777–1784 (2014).

    Article  CAS  PubMed Central  Google Scholar 

  31. Lee, J. et al. Liposome-based engineering of cells to package hydrophobic compounds in membrane vesicles for tumor penetration. Nano Lett. 15, 2938–2944 (2015).

    Article  CAS  Google Scholar 

  32. Sakimoto, K. K., Wong, A. B. & Yang, P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351, 74–77 (2016).

    Article  CAS  Google Scholar 

  33. Kornienko, N. et al. Spectroscopic elucidation of energy transfer in hybrid inorganic–biological organisms for solar-to-chemical production. Proc. Natl Acad. Sci. USA 113, 11750–11755 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  34. Zhao, J. Y. et al. Ultrasmall magnetically engineered Ag2Se quantum dots for instant efficient labeling and whole-body high-resolution multimodal real-time tracking of cell-derived microvesicles. J. Am. Chem. Soc. 138, 1893–1903 (2016).

    Article  CAS  Google Scholar 

  35. Yang, L. L. et al. Acid-resistant near-infrared II Ag2Se quantum dots for gastrointestinal imaging. Anal. Chem. 95, 15540–15548 (2023).

    Article  CAS  Google Scholar 

  36. Zebibula, A. et al. Ultrastable and biocompatible NIR‐II quantum dots for functional bioimaging. Adv. Funct. Mater. 28, 1703451 (2017).

    Article  Google Scholar 

  37. Kowshik, M. et al. Microbial synthesis of semiconductor PbS nanocrystallites. Adv. Mater. 14, 815–818 (2002).

    Article  CAS  Google Scholar 

  38. Weekley, C. M. & Harris, H. H. Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease. Chem. Soc. Rev. 42, 8870–8894 (2013).

    Article  CAS  Google Scholar 

  39. Tarze, A. et al. Extracellular production of hydrogen selenide accounts for thiol-assisted toxicity of selenite against Saccharomyces cerevisiae. J. Biol. Chem. 282, 8759–8767 (2007).

    Article  CAS  Google Scholar 

  40. Pedrajas, J. R. et al. Identification and functional characterization of a novel mitochondrial thioredoxin system in Saccharomyces cerevisiae. J. Biol. Chem. 274, 6366–6373 (1999).

    Article  CAS  Google Scholar 

  41. Zhu, Y. et al. Biosynthesis of selenium nanoparticles and effects of selenite, selenate, and selenomethionine on cell growth and morphology in Rahnella aquatilis HX2. Appl. Microbiol. Biotechnol. 102, 6191–6205 (2018).

    Article  CAS  Google Scholar 

  42. Gray, J. V. et al. “Sleeping beauty”: quiescence in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 68, 187–206 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  43. Cyrne, L., Martins, L., Fernandes, L. & Marinho, H. S. Regulation of antioxidant enzymes gene expression in the yeast Saccharomyces cerevisiae during stationary phase. Free Radic. Biol. Med. 34, 385–393 (2003).

    Article  CAS  Google Scholar 

  44. Gasch, A. P. & Werner-Washburne, M. The genomics of yeast responses to environmental stress and starvation. Funct. Integr. Genomics 2, 181–192 (2002).

    Article  CAS  Google Scholar 

  45. Cui, R. et al. Near-infrared electrogenerated chemiluminescence of ultrasmall Ag2Se quantum dots for the detection of dopamine. Anal. Chem. 84, 8932–8935 (2012).

    Article  CAS  Google Scholar 

  46. Ge, J. P., Xu, S., Liu, L. P. & Li, Y. D. A positive‐microemulsion method for preparing nearly uniform Ag2Se nanoparticles at low temperature. Chemistry 12, 3672–3677 (2006).

    Article  CAS  Google Scholar 

  47. Cheng, L., Liu, X., Lei, J. & Ju, H. Low-potential electrochemiluminescent sensing based on surface unpassivation of CdTe quantum dots and competition of analyte cation to stabilizer. Anal. Chem. 82, 3359–3364 (2010).

    Article  CAS  Google Scholar 

  48. Mikulec, F. V. et al. Organometallic synthesis and spectroscopic characterization of manganese-doped CdSe nanocrystals. J. Am. Chem. Soc. 122, 2532–2540 (2000).

    Article  CAS  Google Scholar 

  49. Jing, L. et al. Magnetically engineered semiconductor quantum dots as multimodal imaging probes. Adv. Mater. 26, 6367–6386 (2014).

    Article  CAS  Google Scholar 

  50. Kalavagunta, C., Michaeli, S. & Metzger, G. J. In vitro Gd‐DTPA relaxometry studies in oxygenated venous human blood and aqueous solution at 3 and 7 T. Contrast Media Mol. Imaging 9, 169–176 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Z.-L. Zhang, Z. Xie, H.-H. Liu, Y. Li, Y.-P. Gu, L.-H. Xiong, C.-Q. Wu and X. Li for their work and contributions to the project. This work was supported by the National Natural Science Foundation of China (Nos. 22293030, 22293032, 21535005, 20921062, 20621502 and 20025311) and the National Basic Research Program of China (973 Program, 2006CB933100 and 2011CB933600).

Author information

Authors and Affiliations

Authors

Contributions

D.-W.P. is the group leader who conceived and initiated the project and supervised the study and the entire manuscript preparation. R.C., J.-Y.Z. and Y.H. developed the procedures for live-cell synthesis and quasi-biosynthesis of QDs and data processing. A.-A.L., X.Z. and J.J. organized and wrote the manuscript. All authors reviewed and edited the manuscript and approved the final draft.

Corresponding author

Correspondence to Dai-Wen Pang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Dhiraj Bhatia and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Hu, Y. S. et al. Natl Sci. Rev. 11, nwae021 (2024): https://doi.org/10.1093/nsr/nwae021

Xiong, L. H. et al. ACS Nano 8, 5116–5124 (2014): https://doi.org/10.1021/nn501174g

Zhao, J. Y. et al. J. Am. Chem. Soc. 138, 1893–1903 (2016): https://doi.org/10.1021/jacs.5b10340

Cui, R. et al. Adv. Funct. Mater. 19, 2359–2364 (2009): https://doi.org/10.1002/adfm.200801492

Gu, Y. P. et al. J. Am. Chem. Soc. 134, 79–82 (2012): https://doi.org/10.1021/ja2089553

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, AA., Cui, R., Zong, X. et al. Live-cell synthesis of biocompatible quantum dots. Nat Protoc 20, 1884–1914 (2025). https://doi.org/10.1038/s41596-024-01133-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41596-024-01133-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing