Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Preparation, maintenance and propagation of synchronous cultures of photoactive Chlamydomonas cells

Abstract

The systematic cultivation of species of photosynthetically active ‘green’ microorganisms in research labs started in the 1940s. Among these microorganisms, Chlamydomonas represents a genus of green biciliated microalgae, of which Chlamydomonas reinhardtii has become the main describing species. For decades C. reinhardtii has been used as an established model organism in biology, including research areas such as molecular biology of eukaryotes, photosynthesis, light receptors, cell metabolism, the dynamics of microtubule assembly and protein transport along cilia. More recently, the use of suspensions of light-responsive living microorganisms has seen a major expansion from the life sciences to the biophysics, statistical physics, fluid dynamics and bioengineering communities. Studies that substantially advance the state of the art in these research areas require the reliable preparation and maintenance of viable, monodisperse and synchronous cell cultures. Although some technical aspects are shared with standard procedures in cell biology and microbiology, Chlamydomonas and its relatives are photosensitive and, simultaneously, motile, meaning this microorganism requires tailored cultivation protocols that are specific to this species. Here we provide guidance on which Chlamydomonas wild-type and mutant strains are suitable for specific experiments and provide detailed step-by-step procedures to measure culture synchronicity, growth rate of the population, average cell size and motility features. The reliable preparation of cell cultures may facilitate future interdisciplinary research using living suspensions of photoactive microorganisms.

Key points

  • Short-term Chlamydomonas cultures, prepared in liquid, are used for experiments, whereas long-term cultures are prepared on agar for the preservation of strains.

  • The preparation of synchronous suspensions of cells facilitates the reproducibility of data obtained in disciplines such as biophysics, statistical physics and fluid dynamics, where motility and collective behavior of large populations of cells is dependent on the health and synchronicity of the culture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure and reproductive cycles of a Chlamydomonas cell.
Fig. 2: Schematics of the experimental protocol for handling Chlamydomonas and other green microalgae.
Fig. 3: Incubation of agar and liquid cultures of Chlamydomonas strains.
Fig. 4: Manual cell counting to estimate the growth rate of Chlamydomonas cells in a suspension.
Fig. 5: Cell size distribution of a Chlamydomonas suspension.
Fig. 6: Evaluating the synchronicity of Chlamydomonas cells in a suspension.
Fig. 7: Assessment of the velocity distribution of Chlamydomonas cells in confinement.
Fig. 8: Hints of culture contamination and alterations of swimming motility of Chlamydomonas in confinement.

Similar content being viewed by others

Data availability

The source data supporting Figs. 48 can be retrieved via Zenodo at https://doi.org/10.5281/zenodo.11191785 (ref. 73).

Code availability

The code in MATLAB for cell detection, tracking and calculating the MSD is available via Zenodo at https://doi.org/10.5281/zenodo.13485141 (ref. 74) under Creative Commons Attribution v.4.0 International Public License and includes a user’s guide.

References

  1. Pröschold, T., Marin, B., Schlösser, U. G. & Melkonian, M. Molecular phylogeny and taxonomic revision of Chlamydomonas (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and description of Oogamochlamys gen. nov. and Lobochlamys gen. nov. Protist 152, 265–300 (2001).

    Article  PubMed  Google Scholar 

  2. Pröschold, T. & Darienko, T. in The Chlamydomonas Sourcebook Vol. 1 (ed. Goodenough, U.) Ch. 1 (Elsevier, 2023).

  3. Gallaher, S. D., Fitz-Gibbon, S. T., Glaesener, A. G., Pellegrini, M. & Merchant, S. S. Chlamydomonas genome resource for laboratory strains reveals a mosaic of sequence variation, identifies true strain histories, and enables strain-specific studies. Plant Cell 27, 2335–2352 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Silflow, C. D. & Lefebvre, P. A. Assembly and motility of eukaryotic cilia and flagella. lessons from Chlamydomonas reinhardtii. Plant Physiol. 127, 1500–1507 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rochaix, J.-D. Chlamydomonas reinhardtii as the photosynthetic yeast. Annu. Rev. Genet. 29, 209–230 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Hegemann, P. Algal sensory photoreceptors. Annu. Rev. Plant Biol. 59, 167–189 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Guschina, I. A. & Harwood, J. L. Lipids and lipid metabolism in eukaryotic algae. Prog. Lipid Res. 45, 160–186 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Silflow, C. D., Mackinder, L. C. & Wingfield, J. in The Chlamydomonas Sourcebook Vol. 1 (ed. Goodenough, U.) Ch. 14 (Elsevier, 2023).

  9. Lorentzen, E. & Lechtreck, K. in The Chlamydomonas Sourcebook Vol. 3 (ed. Dutcher, S.) Ch. 12 (Elsevier, 2023).

  10. Kreis, C. T., Le Blay, M., Linne, C., Makowski, M. M. & Bäumchen, O. Adhesion of Chlamydomonas microalgae to surfaces is switchable by light. Nat. Phys. 14, 45–49 (2018).

    Article  CAS  Google Scholar 

  11. Laroussi, T., Jarrahi, M. & Amselem, G. Short-term memory effects in the phototactic behavior of microalgae. Soft Matter 20, 3996–4006 (2024).

    Article  CAS  PubMed  Google Scholar 

  12. Sjoblad, R. D. & Frederikse, P. H. Chemotactic responses of Chlamydomonas reinhardtii. Mol. Cell. Biol. 1, 1057–1060 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fragkopoulos, A. A. et al. Self-generated oxygen gradients control collective aggregation of photosynthetic microbes. J. R. Soc. Interface 18, 20210553 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goodenough, U. & Engel, B. D. in The Chlamydomonas Sourcebook Vol. 1 (ed. Goodenough, U.) Ch. 2 (Elsevier, 2023).

  15. Schötz, F., Bathelt, H., Arnold, C.-G. & Schimmer, O. Die architektur und organisation der Chlamydomonas-zelle. Protoplasma 75, 229–254 (1972).

    Article  PubMed  Google Scholar 

  16. Boynton, J., Gillham, N. & Chabot, J. Chloroplast ribosome deficient mutants in the green alga Chlamydomonas reinhardi and the question of chloroplast ribosome function. J. Cell Sci. 10, 267–305 (1972).

    Article  CAS  PubMed  Google Scholar 

  17. Bloodgood, R. A. in The Chlamydomonas Sourcebook Vol. 3 (ed. Dutcher, S.) Ch. 10 (Elsevier, 2023).

  18. Sale, W. S. & Dutcher, S. K. in The Chlamydomonas Sourcebook Vol. 3 (ed. Dutcher, S.) Ch. 1 (Elsevier, 2023).

  19. Lechtreck, K. F. Ift–cargo interactions and protein transport in cilia. Trends Biochem. Sci. 40, 765–778 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brown, J. M. & Witman, G. B. Cilia and diseases. BioScience 64, 1126–1137 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Umen, J. & Liu, D. in The Chlamydomonas Sourcebook Vol. 1 (ed. Goodenough, U.) Ch. 8 (Elsevier, 2023).

  22. Coleman, A. W. The nuclear cell cycle in Chlamydomonas (Chlorophyceae) 1. J. Phycol. 18, 192–195 (1982).

    Article  Google Scholar 

  23. Harper, J. & John, P. Coordination of division events in the Chlamydomonas cell cycle. Protoplasma 131, 118–130 (1986).

    Article  CAS  Google Scholar 

  24. Craigie, R. & Cavalier-Smith, T. Cell volume and the control of the Chlamydomonas cell cycle. J. Cell Sci. 54, 173–191 (1982).

    Article  Google Scholar 

  25. Goodenough, U. & Lee, J.-H. in The Chlamydomonas Sourcebook Vol. 1 Ch. 3 (ed. Goodenough, U.) 41–64 (Elsevier, 2023).

  26. Schlösser, U. Enzymatisch gesteuerte Freisetzung von Zoosporen bei Chlamydomonas reinhardii Dangeard in Synchronkultur. Arch. Microbiol. 54, 129–159 (1966).

    Google Scholar 

  27. Goodenough, U., Lee, J.-H. & Snell, W. J. in The Chlamydomonas Sourcebook Vol. 1 (ed. Goodenough, U.) Ch. 9 (Elsevier, 2023).

  28. Hui, C., Schmollinger, S. & Glaesener, A. G. in The Chlamydomonas Sourcebook Vol. 1 (ed. Goodenough, U.) Ch. 11 (Elsevier, 2023).

  29. Sager, R. & Granick, S. Nutritional studies with Chlamydomonas reinhardi. Ann. N. Y. Acad. Sci. 56, 831–838 (1953).

    Article  CAS  PubMed  Google Scholar 

  30. Ma, F., Salomé, P. A., Merchant, S. S. & Pellegrini, M. Single-cell RNA sequencing of batch Chlamydomonas cultures reveals heterogeneity in their diurnal cycle phase. Plant Cell 33, 1042–1057 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Calatrava, V., Tejada-Jimenez, M., Sanz-Luque, E., Fernandez, E. & Galvan, A. in The Chlamydomonas Sourcebook Vol. 2 (eds. Grossman, A. R. & Wollman, F.-A.) Ch. 3 (Elsevier, 2023).

  32. Pröschold, T., Harris, E. H. & Coleman, A. W. Portrait of a species: Chlamydomonas reinhardtii. Genetics 170, 1601–1610 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gorman, D. S. & Levine, R. Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc. Natl Acad. Sci. USA 54, 1665–1669 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kropat, J. et al. A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii. Plant J. 66, 770–780 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Terauchi, A. M., Peers, G., Kobayashi, M. C., Niyogi, K. K. & Merchant, S. S. Trophic status of Chlamydomonas reinhardtii influences the impact of iron deficiency on photosynthesis. Photosynth. Res. 105, 39–49 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ostapenko, T. et al. Curvature-guided motility of microalgae in geometric confinement. Phys. Rev. Lett. 120, 068002 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Jin, D., Kotar, J., Silvester, E., Leptos, K. C. & Croze, O. A. Diurnal variations in the motility of populations of biflagellate microalgae. Biophys. J. 119, 2055–2062 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cammann, J. et al. Emergent probability fluxes in confined microbial navigation. Proc. Natl Acad. Sci. USA 118, e2024752118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bruce, V. G. The biological clock in Chlamydomonas reinhardi. J. Protozool. 17, 328–334 (1970).

    Article  Google Scholar 

  40. Arrieta, J., Barreira, A., Chioccioli, M., Polin, M. & Tuval, I. Phototaxis beyond turning: persistent accumulation and response acclimation of the microalga Chlamydomonas reinhardtii. Sci. Rep. 7, 3447 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Byrne, T. E., Wells, M. R. & Johnson, C. H. Circadian rhythms of chemotaxis to ammonium and of methylammonium uptake in Chlamydomonas. Plant Physiol. 98, 879–886 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Choi, H. I., Kim, J. Y. H., Kwak, H. S., Sung, Y. J. & Sim, S. J. Quantitative analysis of the chemotaxis of a green alga, Chlamydomonas reinhardtii, to bicarbonate using diffusion-based microfluidic device. Biomicrofluidics 10, 014121 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Straley, S. C. & Bruce, V. G. Stickiness to glass: circadian changes in the cell surface of Chlamydomonas reinhardi. Plant Physiol. 63, 1175–1181 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kreis, C. T., Grangier, A. & Bäumchen, O. In vivo adhesion force measurements of Chlamydomonas on model substrates. Soft Matter 15, 3027–3035 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Till, S., Ebmeier, F., Fragkopoulos, A. A., Mazza, M. G. & Bäumchen, O. Motility and self-organization of gliding Chlamydomonas populations. Phys. Rev. Res. 4, L042046 (2022).

    Article  CAS  Google Scholar 

  46. Cavalier-Smith, T. Basal body and flagellar development during the vegetative cell cycle and the sexual cycle of Chlamydomonas reinhardii. J. Cell Sci. 16, 529–556 (1974).

    Article  CAS  PubMed  Google Scholar 

  47. Mittag, M., Kiaulehn, S. & Johnson, C. H. The circadian clock in Chlamydomonas reinhardtii. What is it for? What is it similar to? Plant Physiol. 137, 399–409 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Böddeker, T. J., Karpitschka, S., Kreis, C. T., Magdelaine, Q. & Bäumchen, O. Dynamic force measurements on swimming Chlamydomonas cells using micropipette force sensors. J. R. Soc. Interface 17, 20190580 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kantsler, V., Dunkel, J., Polin, M. & Goldstein, R. E. Ciliary contact interactions dominate surface scattering of swimming eukaryotes. Proc. Natl Acad. Sci. USA 110, 1187–1192 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Williams, C. R. & Bees, M. A. A tale of three taxes: photo-gyro-gravitactic bioconvection. J. Exp. Biol. 214, 2398–2408 (2011).

    Article  PubMed  Google Scholar 

  51. Crutchfield, A., Diller, K. & Brand, J. Cryopreservation of Chlamydomonas reinhardtii (Chlorophyta). Eur. J. Phycol. 34, 43–52 (1999).

    Article  Google Scholar 

  52. Day, J. G. Cryopreservation of microalgae and cyanobacteria. Methods Mol. Biol. 141–151 (2007).

  53. Piasecki, B. P., Diller, K. R. & Brand, J. J. Cryopreservation of Chlamydomonas reinhardtii: a cause of low viability at high cell density. Cryobiology 58, 103–109 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Hlavová, M., Vítová, M. & Bišová, K. Synchronization of green algae by light and dark regimes for cell cycle and cell division studies. Methods Mol. Biol. 1370, 3–16 (2016).

    Article  PubMed  Google Scholar 

  55. Zhang, N. et al. Systems-wide analysis revealed shared and unique responses to moderate and acute high temperatures in the green alga Chlamydomonas reinhardtii. Commun. Biol. 5, 460 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Order Chlamydomonas strains from Chlamydomonas resource center (CC). Strains Archives https://www.chlamycollection.org/products/strains/ (2025).

  57. Order Chlamydomonas strains from Sammlung von Algenkulturen Göttingen (SAG). MBM ScienceBridge https://sciencebridge.de/en/algae.html (2025).

  58. Damoo, D. Y. & Durnford, D. G. Long-term survival of Chlamydomonas reinhardtii during conditional senescence. Arch. Microbiol. 203, 5333–5344 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Guide for cell counting using a hemocytometer (Sigma Aldrich). Milipore Sigma https://www.sigmaaldrich.com/DE/en/technical-documents/technical-article/cell-culture-and-cell-culture-analysis/mammalian-cell-culture/cell-quantification (2025).

  60. Catalan, R. E. et al. Light-regulated adsorption and desorption of Chlamydomonas cells at surfaces. Soft Matter 19, 306–314 (2023).

    Article  CAS  PubMed  Google Scholar 

  61. Bassi, R., Soen, S. Y., Frank, G., Zuber, H. & Rochaix, J. Characterization of chlorophyll a/b proteins of photosystem I from Chlamydomonas reinhardtii. J. Biol. Chem. 267, 25714–25721 (1992).

    Article  CAS  PubMed  Google Scholar 

  62. Surzycki, S. in Methods in Enzymology Vol. 23 (ed. Pietro, A. S.) 67–73 (Elsevier, 1971).

  63. Blair, D. & Dufresne, E. The matlab particle tracking code repository. Matlab http://physics.georgetown.edu/matlab (2008).

  64. Kessler, J. O. Individual and collective fluid dynamics of swimming cells. J. Fluid Mech. 173, 191–205 (1986).

    Article  Google Scholar 

  65. Cooper, M. B. & Smith, A. G. Exploring mutualistic interactions between microalgae and bacteria in the omics age. Curr. Opin. Plant Biol. 26, 147–153 (2015).

    Article  PubMed  Google Scholar 

  66. Aiyar, P. et al. Antagonistic bacteria disrupt calcium homeostasis and immobilize algal cells. Nat. Commun. 8, 1756 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Carrasco Flores, D. et al. A mutualistic bacterium rescues a green alga from an antagonist. Proc. Natl Acad. Sci. USA 121, e2401632121 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kawachi, M. & Noël, M.-H. in Algal Culturing Techniques (ed. Andersen, R. A.) 65–81 (Elsevier, 2005).

  69. Guillard, R. R. in Algal Culturing Techniques (ed. Andersen, R. A.) 117–132 (Elsevier, 2005).

  70. Meeuse, B. A simple method for concentrating phototactic flagellates and separating them from debris. Arch. Mikrobiol. 45, 423–424 (1963).

    Article  CAS  PubMed  Google Scholar 

  71. Sieracki, M., Poulton, N. & Crosbie, N. in Algal Culturing Techniques (ed. Andersen, R. A.) 101–116 (Elsevier, 2005).

  72. Kim, H. S., Devarenne, T. P. & Han, A. Microfluidic systems for microalgal biotechnology: a review. Algal Res. 30, 149–161 (2018).

    Article  Google Scholar 

  73. Fragkopoulos, A. & Catalan, R. Cultivation of Chlamydomonas cells. Zenodo https://doi.org/10.5281/zenodo.11191785 (2024).

  74. Fragkopoulos, A. & Catalan, R. Detection and tracking of Chlamydomonas cells. Zenodo https://doi.org/10.5281/zenodo.13485141 (2024).

  75. Morishita, J., Tokutsu, R., Minagawa, J., Hisabori, T. & Wakabayashi, K.-I. Characterization of Chlamydomonas reinhardtii mutants that exhibit strong positive phototaxis. Plants 10, 1483 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ide, T. et al. Identification of the agg1 mutation responsible for negative phototaxis in a “wild-type” strain of Chlamydomonas reinhardtii. Biochem. Biophys. Rep. 7, 379–385 (2016).

    PubMed  PubMed Central  Google Scholar 

  77. Claes, H. Autolyse der Zellwand bei den Gameten von Chlamydomonas reinhardii. Arch. Mikrobiol 78, 180–188 (1971).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Göttingen Algae Culture Collection (SAG) for providing SAG-labeled microalgal strains used in this work and T. Pröschold for insightful discussions. R.E.C. acknowledges generous financial support from the German Academic Exchange Service (DAAD).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the development of the protocol. R.E.C., A.A.F. and O.B. led the data analysis. R.E.C. and A.A.F. wrote the first draft of the manuscript. All authors contributed to the discussions and the final version of the manuscript.

Corresponding author

Correspondence to Oliver Bäumchen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Tyler W. Johannes and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key References

Kreis, C. T. et al. Nat. Phys. 14, 45–49 (2018): https://doi.org/10.1038/nphys4258

Cammann, J. et al. Proc. Natl Acad. Sci. USA 118, e2024752118 (2021): https://doi.org/10.1073/pnas.2024752118

Ostapenko, T. et al. Phys. Rev. Lett. 120, 068002 (2018): https://doi.org/10.1103/PhysRevLett.120.068002

Böddeker, T. J. et al. J. R. Soc. Interface 17, 20190580 (2020): https://doi.org/10.1098/rsif.2019.0580

Till, S. et al. Phys. Rev. Res 4, L042046 (2022): https://doi.org/10.1103/PhysRevResearch.4.L042046

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catalan, R.E., Fragkopoulos, A.A., Girot, A. et al. Preparation, maintenance and propagation of synchronous cultures of photoactive Chlamydomonas cells. Nat Protoc 20, 2125–2150 (2025). https://doi.org/10.1038/s41596-024-01135-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41596-024-01135-3

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology