Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Human induced pluripotent stem cell-derived cardiomyocytes and their use in a cardiac organ-on-a-chip to assay electrophysiology, calcium and contractility

Abstract

Cardiac organs-on-a-chip (OoCs) or microphysiological systems have the potential to predict cardiac effects of new drug candidates, including unanticipated cardiac outcomes, which are among the main causes for drug attrition. This protocol describes how to prepare and use a cardiac OoC containing cardiomyocytes differentiated from human induced pluripotent stem cells (hiPS cells). The use of cells derived from hiPS cells as reliable sources of human cells from diverse genetic backgrounds also holds great potential, especially when cultured in OoCs that are physiologically relevant culture platforms. To promote the broad adoption of hiPS cell-derived cardiac OoCs in the drug development field, there is a need to first ensure reproducibility in their preparation and use. This protocol aims to provide key information on how to reduce sources of variability during hiPS cell maintenance, differentiation, loading and maturation in OoCs. Variability in these procedures can lead to inconsistent purity after differentiation and variable function between batches of microtissues formed in OoCs. This protocol also focuses on describing the handling and functional assessment of cardiac microtissues using live-cell microscopy approaches to quantify parameters of cellular electrophysiology, calcium transients and contractility. The protocol consists of five stages: (1) thaw and maintain hiPS cells, (2) differentiate hiPS cell cardiomyocytes, (3) load differentiated cells into OoCs, (4) maintain and characterize loaded cells, and (5) evaluate and utilize cardiac OoCs. Execution of the entire protocol takes ~40 days. The required skills to carry out the protocol are experience with sterile techniques, mammalian cell culture and maintaining hiPS cells in a pluripotent state.

Key points

  • Preparation and use of a cardiac organ-on-a-chip is described in five stages: thawing of human induced pluripotent stem cells, differentiation into cardiomyocytes, loading the microfluidic chip with cardiomyocytes, maturation of microtissues and functional characterization with image-based assays.

  • This protocol reproduces the physiology of the myocardium more robustly than traditional 2D cultures, ensuring reproducibility and reducing variability in results that can limit the use of organs-on-a-chip in drug development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Layout of plates used after thawing, while maintaining and before differentiating WTC11 GCaMP6f-hiPS cells and morphological features of cells in culture.
Fig. 2: Variations in the morphology of cells in culture during the three days that preceded the onset of differentiation and the first six days of differentiation of hiPS cells into cardiomyocytes.
Fig. 3: Loading differentiated cells into cardiac OoCs.
Fig. 4: Two centrifugation steps used to load differentiated hiPS cell-cardiomyocytes into the cell chamber of the OoC.
Fig. 5: Timeline of the preparation stages of OoCs after differentiating cardiomyocytes.
Fig. 6: Variations in the cardiac function of OoCs were recorded in response to changes in extracellular calcium concentration (0.125–2 mM).
Fig. 7: Beat rate-dependent functional output of OoCs within the range of 0.75–2 Hz.

Similar content being viewed by others

Data availability

Data supporting the findings of this study are shared in the paper. Source data accompany this paper. Source data are provided with this paper.

Code availability

Codes used for analyzing videos of fluorescent labels in cells are publicly available at Zenodo https://doi.org/10.5281/zenodo.12563741. The graphical user interface for characterizing movement of cells with digital image correlation using brightfield microscopy videos of beating cells has been published and is publicly available18.

References

  1. Tsao, C. W. et al. Heart disease and stroke statistics—2023 update: a report from the American Heart Association. Circulation 147, e93–e621 (2023).

    Article  PubMed  Google Scholar 

  2. Gwathmey, J. K., Tsaioun, K. & Hajjar, R. J. Cardionomics: a new integrative approach for screening cardiotoxicity of drug candidates. Expert Opin. Drug Metab. Toxicol. 5, 647–660 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Weaver, R. J. & Valentin, J. P. Today’s challenges to de-risk and predict drug safety in human ‘Mind-the-Gap’. Toxicol. Sci. 167, 307–321 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Vunjak-Novakovic, G., Ronaldson-Bouchard, K. & Radisic, M. Organs-on-a-chip models for biological research. Cell 184, 4597–4611 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Baran, S. W. et al. Perspectives on the evaluation and adoption of complex in vitro models in drug development: workshop with the FDA and the pharmaceutical industry (IQ MPS Affiliate). ALTEX https://doi.org/10.14573/altex.2112203 (2022).

  6. Huebsch, N. et al. Metabolically driven maturation of human-induced-pluripotent-stem-cell-derived cardiac microtissues on microfluidic chips. Nat. Biomed. Eng. 6, 372–388 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Charrez, B. et al. Heart muscle microphysiological system for cardiac liability prediction of repurposed COVID-19 therapeutics. Front. Pharmacol. 12, 684252 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mathur, A. et al. Human iPSC-based cardiac microphysiological system for drug screening applications. Sci. Rep. 5, 8883 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miller, J. M. et al. Heart slice culture system reliably demonstrates clinical drug-related cardiotoxicity. Toxicol. Appl. Pharmacol. 406, 115213 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Miller, J. M. et al. Biomimetic cardiac tissue culture model (CTCM) to emulate cardiac physiology and pathophysiology ex vivo. Commun. Biol. 5, 934 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu, P. et al. Maturation strategies and limitations of induced pluripotent stem cell-derived cardiomyocytes. Biosci. Rep. https://doi.org/10.1042/BSR20200833 (2021).

  12. Schroer, A., Pardon, G., Castillo, E., Blair, C. & Pruitt, B. Engineering hiPSC cardiomyocyte in vitro model systems for functional and structural assessment. Prog. Biophys. Mol. Biol. 144, 3–15 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Ronaldson-Bouchard, K. et al. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 556, 239–243 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ribeiro, A. J. S. et al. Considerations for an in vitro, cell-based testing platform for detection of drug-induced inotropic effects in early drug development. Part 2: designing and fabricating microsystems for assaying cardiac contractility with physiological relevance using human iPSC-cardiomyocytes. Front. Pharmacol. 10, 934 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, G. et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat. Med. 20, 616–623 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guo, J. et al. Substrate mechanics unveil early structural and functional pathology in iPSC micro-tissue models of hypertrophic cardiomyopathy. iScience 27, 109954 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mozneb, M. et al. Multi-lineage heart-chip models drug cardiotoxicity and enhances maturation of human stem cell-derived cardiovascular cells. Lab Chip 24, 869–881 (2024).

    Article  CAS  PubMed  Google Scholar 

  18. Ribeiro, A. J. S. et al. Multi-imaging method to assay the contractile mechanical output of micropatterned human iPSC-derived cardiac myocytes. Circ. Res. 120, 1572–1583 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maddah, M. et al. A non-invasive platform for functional characterization of stem-cell-derived cardiomyocytes with applications in cardiotoxicity testing. Stem Cell Rep. 4, 621–631 (2015).

    Article  CAS  Google Scholar 

  20. Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang, Y. L., Walker, A. S. & Miller, E. W. A photostable silicon rhodamine platform for optical voltage sensing. J. Am. Chem. Soc. 137, 10767–10776 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McCain, M. L., Sheehy, S. P., Grosberg, A., Goss, J. A. & Parker, K. K. Recapitulating maladaptive, multiscale remodeling of failing myocardium on a chip. Proc. Natl Acad. Sci. USA 110, 9770–9775 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Charrez, B. et al. In vitro safety ‘clinical trial’ of the cardiac liability of drug polytherapy. Clin. Transl. Sci. 14, 1155–1165 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Charwat, V. et al. Validating the arrhythmogenic potential of high-, intermediate-, and low-risk drugs in a human-induced pluripotent stem cell-derived cardiac microphysiological system. ACS Pharmacol. Transl. Sci. 5, 652–667 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ferdinandy, P. et al. Definition of hidden drug cardiotoxicity: paradigm change in cardiac safety testing and its clinical implications. Eur. Heart J. 40, 1771–1777 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Yang, X., Ribeiro, A. J. S., Pang, L. & Strauss, D. G. Use of human iPSC-CMs in nonclinical regulatory studies for cardiac safety assessment. Toxicol. Sci. 190, 117–126 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Mamoshina, P., Rodriguez, B. & Bueno-Orovio, A. Toward a broader view of mechanisms of drug cardiotoxicity. Cell Rep. Med. 2, 100216 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Luo, M. & Anderson, M. E. Mechanisms of altered Ca2+ handling in heart failure. Circ. Res. 113, 690–708 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Leung, C. M. A guide to the organ-on-a-chip. Nat. Rev. Methods Primers 2, 33 (2022).

    Article  CAS  Google Scholar 

  30. Huebsch, N. et al. Automated video-based analysis of contractility and calcium flux in human-induced pluripotent stem cell-derived cardiomyocytes cultured over different spatial scales. Tissue Eng. Part C Methods 21, 467–479 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dame, K. & Ribeiro, A. J. S. Microengineered systems with iPSC-derived cardiac and hepatic cells to evaluate drug adverse effects. Exp. Biol. Med. 246, 317–331 (2021).

    Article  CAS  Google Scholar 

  32. Arefin, A. et al. Reproducibility of drug-induced effects on the contractility of an engineered heart tissue derived from human pluripotent stem cells. Front. Pharmacol. 14, 1212092 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lian, X. et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc. Natl Acad. Sci. USA 109, E1848–E1857 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pointon, A. et al. Cardiovascular microphysiological systems (CVMPS) for safety studies—a pharma perspective. Lab Chip 21, 458–472 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Liu, S., Fang, C., Zhong, C., Li, J. & Xiao, Q. Recent advances in pluripotent stem cell-derived cardiac organoids and heart-on-chip applications for studying anti-cancer drug-induced cardiotoxicity. Cell Biol. Toxicol. 39, 2527–2549 (2023).

    Article  PubMed  Google Scholar 

  36. Arslan, U., Orlova, V. V. & Mummery, C. L. Perspectives for future use of cardiac microtissues from human pluripotent stem cells. ACS Biomater. Sci. Eng. 8, 4605–4609 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wauchop, M. et al. Maturation of iPSC-derived cardiomyocytes in a heart-on-a-chip device enables modeling of dilated cardiomyopathy caused by R222Q-SCN5A mutation. Biomaterials 301, 122255 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mastikhina, O. et al. Human cardiac fibrosis-on-a-chip model recapitulates disease hallmarks and can serve as a platform for drug testing. Biomaterials 233, 119741 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Mourad, O., Yee, R., Li, M. & Nunes, S. S. Modeling heart diseases on a chip: advantages and future opportunities. Circ. Res. 132, 483–497 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Ergir, E. et al. Generation and maturation of human iPSC-derived 3D organotypic cardiac microtissues in long-term culture. Sci. Rep. 12, 17409 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Volmert, B. et al. A patterned human primitive heart organoid model generated by pluripotent stem cell self-organization. Nat. Commun. 14, 8245 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Varzideh, F. et al. Human cardiomyocytes undergo enhanced maturation in embryonic stem cell-derived organoid transplants. Biomaterials 192, 537–550 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Lewis-Israeli, Y. R. et al. Self-assembling human heart organoids for the modeling of cardiac development and congenital heart disease. Nat. Commun. 12, 5142 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ma, Z. et al. Contractile deficits in engineered cardiac microtissues as a result of MYBPC3 deficiency and mechanical overload. Nat. Biomed. Eng. 2, 955–967 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Caspi, O. et al. Modeling of arrhythmogenic right ventricular cardiomyopathy with human induced pluripotent stem cells. Circ. Cardiovasc. Genet. 6, 557–568 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Yazawa, M. et al. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 471, 230–234 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huebsch, N. et al. Miniaturized iPS-cell-derived cardiac muscles for physiologically relevant drug response analyses. Sci. Rep. 6, 24726 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee-Montiel, F. T. et al. Integrated isogenic human induced pluripotent stem cell-based liver and heart microphysiological systems predict unsafe drug-drug interaction. Front. Pharmacol. 12, 667010 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Veldhuizen, J., Cutts, J., Brafman, D. A., Migrino, R. Q. & Nikkhah, M. Engineering anisotropic human stem cell-derived three-dimensional cardiac tissue on-a-chip. Biomaterials 256, 120195 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Liu, Y. et al. Human heart-on-a-chip microphysiological system comprising endothelial cells, fibroblasts, and iPSC-derived cardiomyocytes. Sci. Rep. 14, 18063 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ang, Y. S. et al. Disease model of GATA4 mutation reveals transcription factor cooperativity in human cardiogenesis. Cell 167, 1734–1749 e1722 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Judge, L. M. et al. A BAG3 chaperone complex maintains cardiomyocyte function during proteotoxic stress. JCI Insight 2, e94623 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yang, X., Pabon, L. & Murry, C. E. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ. Res. 114, 511–523 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Biendarra-Tiegs, S. M., Secreto, F. J. & Nelson, T. J. Addressing variability and heterogeneity of induced pluripotent stem cell-derived cardiomyocytes. Adv. Exp. Med. Biol. 1212, 1–29 (2020).

    CAS  PubMed  Google Scholar 

  55. Lyra-Leite, D. M. et al. A review of protocols for human iPSC culture, cardiac differentiation, subtype-specification, maturation, and direct reprogramming. STAR Protoc. 3, 101560 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tagle, D. A. The NIH microphysiological systems program: developing in vitro tools for safety and efficacy in drug development. Curr. Opin. Pharmacol. 48, 146–154 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Tomlinson, L. et al. Considerations from an international regulatory and pharmaceutical industry (IQ MPS Affiliate) workshop on the standardization of complex in vitro models in drug development. Adv. Biol. https://doi.org/10.1002/adbi.202300131 (2023).

  58. Kuo, H. H. et al. Negligible-cost and weekend-free chemically defined human iPSC culture. Stem Cell Rep. 14, 256–270 (2020).

    Article  CAS  Google Scholar 

  59. Ohnuki, M., Takahashi, K. & Yamanaka, S. Generation and characterization of human induced pluripotent stem cells. Curr. Protoc. Stem Cell Biol. https://doi.org/10.1002/9780470151808.sc04a02s9 (2009).

  60. Pantazis, C. B. et al. A reference human induced pluripotent stem cell line for large-scale collaborative studies. Cell Stem Cell 29, 1685–1702 e1622 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Viana, M. P. et al. Integrated intracellular organization and its variations in human iPS cells. Nature 613, 345–354 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rivera, T., Zhao, Y., Ni, Y. & Wang, J. Human-induced pluripotent stem cell culture methods under cGMP conditions. Curr. Protoc. Stem Cell Biol. 54, e117 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Richards, C., Sarkar, S., Kandell, J., Snyder, R. & Lakshmipathy, U. Assessing the suitability of cell counting methods during different stages of a cell processing workflow using an ISO 20391-2 guided study design and analysis. Front. Bioeng. Biotechnol. 11, 1223227 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Warnecke, N. et al. Generation of bi-allelic MYBPC3 truncating mutant and isogenic control from an iPSC line of a patient with hypertrophic cardiomyopathy. Stem Cell Res. 55, 102489 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Marty, I. & Faure, J. Excitation-contraction coupling alterations in myopathies. J. Neuromuscul. Dis. 3, 443–453 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Butler, L. et al. Enhanced characterization of contractility in cardiomyocytes during early drug safety assessment. Toxicol. Sci. 145, 396––406 (2015).

    Article  PubMed  Google Scholar 

  67. Chung, J. H., Biesiadecki, B. J., Ziolo, M. T., Davis, J. P. & Janssen, P. M. Myofilament calcium sensitivity: role in regulation of in vivo cardiac contraction and relaxation. Front. Physiol. 7, 562 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Tandon, N. et al. Electrical stimulation systems for cardiac tissue engineering. Nat. Protoc. 4, 155–173 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Drubin, D. G. & Hyman, A. A. Stem cells: the new ‘model organism’. Mol. Biol. Cell 28, 1409–1411 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fonoudi, H., Lyra-Leite, D. M., Javed, H. A. & Burridge, P. W. Generating a cost-effective, weekend-free chemically defined human induced pluripotent stem cell (hiPSC) culture medium. Curr. Protoc. Stem Cell Biol. 53, e110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wakabayashi, S. et al. Overexpression of Na+/H+ exchanger 1 specifically induces cell death in human iPS cells via sustained activation of the Rho kinase ROCK. J. Biol. Chem. 294, 19577–19588 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Anderson, P. A., Malouf, N. N., Oakeley, A. E., Pagani, E. D. & Allen, P. D. Troponin T isoform expression in humans. A comparison among normal and failing adult heart, fetal heart, and adult and fetal skeletal muscle. Circ. Res. 69, 1226–1233 (1991).

    Article  CAS  PubMed  Google Scholar 

  73. Garcia, M. I., Chen, J. J. & Boehning, D. Genetically encoded calcium indicators for studying long-term calcium dynamics during apoptosis. Cell Calcium 61, 44–49 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Garcia, M. I. & Boehning, D. Cardiac inositol 1,4,5-trisphosphate receptors. Biochim. Biophys. Acta Mol. Cell Res. 1864, 907–914 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Marks, A. R. Cardiac intracellular calcium release channels: role in heart failure. Circ. Res. 87, 8–11 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Marks, A. R. Calcium and the heart: a question of life and death. J. Clin. Invest. 111, 597–600 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. He, J. Q., Ma, Y., Lee, Y., Thomson, J. A. & Kamp, T. J. Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ. Res. 93, 32–39 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Endoh, M. Force-frequency relationship in intact mammalian ventricular myocardium: physiological and pathophysiological relevance. Eur. J. Pharmacol. 500, 73–86 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank J. Florian from the Division of Applied Regulatory Science at the US Food and Drug Administration (FDA) for his valuable suggestions during the writing of the manuscript; E. Miller (Berkeley College of Chemistry) for supplying the voltage sensing dye BeRST; J. Berger from the FDA Library for her editorial support, and Z. Ma for his valuable assistance during the manuscript preparation.

Author information

Authors and Affiliations

Authors

Contributions

M.I.G., A.J.S.R., K.D., V.C., R.Y. and B.A.S. developed and optimized the protocol. M.I.G. and A.J.S.R. wrote the manuscript. M.I.G. performed experiments. V.C., B.A.S. and K.E.H. provided microfluidic chambers and protocols for handling and use. H.F. and S.T.W. contributed to the development of software used for this protocol. All authors contributed to the manuscript and approved the submitted version.

Corresponding authors

Correspondence to M. Iveth Garcia or Alexandre J. S. Ribeiro.

Ethics declarations

Competing interests

Work for the manuscript was completed by A.J.S.R., K.D., and R.Y. while employees of the FDA. A.J.S.R is currently employed by Hovione PharmaScience Ltd. K.D. is currently employed by United Therapeutics Corporation. R.Y. is currently part of the Department of Biomedical Engineering and Mechanics at Virginia Polytechnic Institute and State University. K.E.H., V.C., S.T.W., H.F. and B.A.S. have either a financial or equity relationship with Organos Inc. and both they and the company may benefit from commercialization of the results of this research. All other authors declare that they have no competing financial interests and that the article reflects the views of the authors and should not be construed to represent the FDA’s views or policies.

Peer review

Peer review information

Nature Protocols thanks Brian Timko, Hidetoshi Masumoto, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Mathur, A. et al. Sci. Rep. 5, 8883 (2015): https://doi.org/10.1038/srep08883

Charrez, B. et al. Front. Pharmacol. 12, 684252 (2021): https://doi.org/10.3389/fphar.2021.684252

Huebsch, N. et al. Nat. Biomed. Eng. 6, 372–388 (2022): https://doi.org/10.1038/s41551-022-00884-4

Arefin, A. et al. Front. Pharmacol. 14, 1212092 (2023): https://doi.org/10.3389/fphar.2023.1212092

Supplementary information

Supplementary Information

Section 1. Supplementary Figs. 1–4, Section 2. Supplementary Tables 1 and 2, Section 3. Supplementary Methods, Section 4. Supplementary Software. Section 5. Supplementary References.

Supplementary Video 1

Brightfield video of differentiated hiPS cell-cardiomyocytes. Cardiomyocyte contractions were first observed by light microscopy at day 7 of differentiation and were easily observed by naked eye without microscopic magnification from day 8 onward. Sheet-like appearance is expected to start spontaneously contract as a single sheet starting day 7 of differentiation.

Supplementary Video 2

Video of differentiated hiPS cell-cardiomyocytes expressing GCaMP6f fluorescent protein. For cells expressing GCaMP6f, changes in fluorescent intensity are typically apparent. Using eGFP channel, intracellular calcium typically seems to flow evenly within the beating sheet of cells. Fluorescent variations usually start being observed on day 7 of differentiation.

Supplementary Video 3

Video example of over excited tissue before and after 20 min rest. Representative videos showing over excited tissue after handling.

Supplementary Video 4

Video example of over excited tissue before and after 20 min rest. Representative video shows how tissue goes back to baseline spontaneous contraction after 20 min rest on the microscope.

Source data

Source Data Fig. 6

Source data for contraction, intracellular calcium, action potential and raw data for calcium trace.

Source Data Fig. 7

Source data for contraction, intracellular calcium, action potential and raw data for contraction displacement trace.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, M.I., Dame, K., Charwat, V. et al. Human induced pluripotent stem cell-derived cardiomyocytes and their use in a cardiac organ-on-a-chip to assay electrophysiology, calcium and contractility. Nat Protoc (2025). https://doi.org/10.1038/s41596-025-01166-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-025-01166-4

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research