Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Solid-phase DNA-encoded library synthesis: a master builder’s instructions

Abstract

Solid-phase DNA-encoded library (DEL) synthesis is a next-generation drug discovery technology with powerful activity-based and cellular lead identification capabilities. Solid-phase DELs combine the one-bead–one-compound approach with DNA encoding to furnish beads that display multiple copies of photocleavable library members and DNA encoding tags. Sequential chemical synthesis and enzymatic DNA ligation reactions yield an encoded library in which individual library members are physically isolable, enabling various high-throughput screening modalities. This advancement from on-DNA synthesis, in which small molecules are directly attached to their DNA-encoding tags, decouples the library member from the steric bulk of the DNA tag, which prevents biased binding to a target. Here we provide step-by-step instructions for solid-phase DEL synthesis, incorporating all of our most recent quality control innovations to ensure robust library production. The protocol begins with on-bead synthesis of a linker containing a spectroscopic handle for chromatographic analysis, an ionization enhancer for mass spectrometry and an alkyne for installation of DNA encoding sites via copper-catalyzed azide-alkyne cycloaddition click chemistry. Coupling of a photocleavable linker before library synthesis enables compound liberation from the bead for activity-based screening. Powerful combinatorial split-and-pool parallel synthesis tactics transform modest collections of small-molecule building blocks into large DELs of all possible building block combinations. Post synthesis, decoding and mass analysis of single DEL beads as well as whole-library deep sequencing provides rigorous chemical and bioinformatic quality control and establishes suitability for screening. The solid-phase chemistry is highly accessible: expertise in chemical synthesis is not necessary and solid-phase synthesis apparatus is routinely available in molecular biology laboratories. This procedure requires ~1 month to complete.

Key points

  • This solid-phase DNA-encoded library synthesis protocol uses combinatorial split-and-pool synthesis to generate diverse, photocleavable chemical compounds encoded by DNA tags.

  • Solid-phase chemistry using a photocleavable linker allows off-DNA release and evaluation of small-molecule library members, enabling activity-based screening for DNA-encoded libraries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of OBOC-DEL synthesis.
Fig. 2: Library linker synthesis.
Fig. 3: BB QC flowchart.
Fig. 4: N3-HDNA preparation and characterization.
Fig. 5: Example encoding formats using a six-position encoding scheme.
Fig. 6: Example PAGE analysis and successful single-bead deconvolution by Sanger DNA sequencing.
Fig. 7: NGS data analysis workflow.

Similar content being viewed by others

Data availability

Example NGS decoding scripts and raw data files accompanying figures within this manuscript can be found at Example NGS Decoding script via Figshare at https://figshare.com/s/425bb12ef2b5f20bb856 (ref. 45). The raw data files can be found via Figshare at https://figshare.com/s/5453000e506029b5298c (ref. 46). Source data are provided with this paper.

References

  1. Carter, A. J. et al. Target 2035: probing the human proteome. Drug Discov. Today 24, 2111–2115 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, Y. & Clark, M. A. Design concepts for DNA-encoded library synthesis. Bioorg. Med. Chem. 41, 116189 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Henley, M. J. & Koehler, A. N. Advances in targeting ‘undruggable’ transcription factors with small molecules. Nat. Rev. Drug Discov. 20, 669–688 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Coleman, N. & Rodon, J. Taking aim at the undruggable. Am. Soc. Clin. Oncol. Educ. Book 41, e145–e152 (2021).

    Article  Google Scholar 

  5. Dixit, A., Barhoosh, H. & Paegel, B. M. Translating the genome into drugs. Acc. Chem. Res. 56, 489–499 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lam, K. S., Lebl, M. & Krchňák, V. The ‘One-Bead-One-Compound’ combinatorial library method. Chem. Rev. 97, 411–448 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Brenner, S. & Lerner, R. A. Encoded combinatorial chemistry. Proc. Natl. Acad. Sci. USA 89, 5381–5383 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Melkko, S., Scheuermann, J., Dumelin, C. E. & Neri, D. Encoded self-assembling chemical libraries. Nat. Biotechnol. 22, 568–574 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Clark, M. A. et al. Design, synthesis and selection of DNA-encoded small-molecule libraries. Nat. Chem. Biol. 5, 647–654 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Mannocci, L. et al. High-throughput sequencing allows the identification of binding molecules isolated from DNA-encoded chemical libraries. Proc. Natl. Acad. Sci. USA 105, 17670–17675 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Harris, P. A. et al. DNA-encoded library screening identifies benzo[b][1,4]oxazepin-4-ones as highly potent and monoselective receptor interacting protein 1 kinase inhibitors. J. Med. Chem. 59, 2163–2178 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Cuozzo, J. W. et al. Novel autotaxin inhibitor for the treatment of idiopathic pulmonary fibrosis: A clinical candidate discovered using DNA-encoded chemistry. J. Med. Chem. 63, 7840–7856 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Kung, P.-P. et al. Characterization of specific N‑α-acetyltransferase 50 (Naa50) inhibitors identified using a DNA encoded library. ACS Med. Chem. Lett. 11, 1175–1184 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ding, Y. et al. Discovery of soluble epoxide hydrolase inhibitors through DNA-encoded library technology (ELT). Bioorg. Med. Chem. 41, 116216 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Machutta, C. A. et al. Prioritizing multiple therapeutic targets in parallel using automated DNA-encoded library screening. Nat. Commun. 8, 16081 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cai, B. et al. Selection of DNA-encoded libraries to protein targets within and on living cells. J. Am. Chem. Soc. 141, 17057–17061 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Litovchick, A. et al. Novel nucleic acid binding small molecules discovered using DNA-encoded chemistry. Molecules 24, 2026 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang, Y. et al. Selection of DNA-encoded chemical libraries against endogenous membrane proteins on live cells. Nat. Chem. 13, 77–88 (2021).

    Article  PubMed  Google Scholar 

  19. Satz, A. L., Kuai, L. & Peng, X. Selections and screenings of DNA-encoded chemical libraries against enzyme and cellular targets. Bioorg. Med. Chem. Lett. 39, 127851 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Benhamou, R. I. et al. DNA-encoded library versus RNA-encoded library selection enables design of an oncogenic noncoding RNA inhibitor. Proc. Natl. Acad. Sci. USA 119, e2114971119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    Article  CAS  Google Scholar 

  22. MacConnell, A. B., McEnaney, P. J., Cavett, V. J. & Paegel, B. M. DNA-encoded solid-phase synthesis: encoding language design and complex oligomer library synthesis. ACS Comb. Sci. 17, 518–534 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Malone, M. L. & Paegel, B. M. What is a ‘DNA-compatible’ reaction? ACS Comb. Sci. 18, 182–187 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Price, A. K., MacConnell, A. B. & Paegel, B. M. hνSABR: photochemical dose–response bead screening in droplets. Anal. Chem. 88, 2904–2911 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. MacConnell, A. B., Price, A. K. & Paegel, B. M. An integrated microfluidic processor for DNA-encoded combinatorial library functional screening. ACS Comb. Sci. 19, 181–192 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cochrane, W. G. et al. Activity-based DNA-encoded library screening. ACS Comb. Sci. 21, 425–435 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fitzgerald, P. R., Cochrane, W. G. & Paegel, B. M. Dose–response activity-based DNA-encoded library screening. ACS Med. Chem. Lett. 14, 1295–1303 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barhoosh, H. et al. Activity-based DNA-encoded library screening for selective inhibitors of eukaryotic translation. ACS Cent. Sci. 10, 1960–1968 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hackler, A. L., FitzGerald, F. G., Dang, V. Q., Satz, A. L. & Paegel, B. M. Off-DNA DNA-encoded library affinity screening. ACS Comb. Sci. 22, 25–34 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Hu, J. et al. Liposomal permeation assay for droplet-scale pharmacokinetic screening. J. Med. Chem. 66, 6288–6296 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mendes, K. R. et al. High-throughput identification of DNA-encoded IgG ligands that distinguish active and latent Mycobacterium tuberculosis infections. ACS Chem. Biol. 12, 234–243 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Gibaut, Q. M. R. et al. Study of an RNA-focused DNA-encoded library informs design of a degrader of a r(CUG) repeat expansion. J. Am. Chem. Soc. 144, 21972–21979 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cochrane, W. G., Fitzgerald, P. R. & Paegel, B. M. Antibacterial discovery via phenotypic DNA-encoded library screening. ACS Chem. Biol. 16, 2752–2756 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McCloskey, K. et al. Machine learning on DNA-encoded libraries: a new paradigm for hit finding. J. Med. Chem. 63, 8857–8866 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Lim, K. S. et al. Machine learning on DNA-encoded library count data using an uncertainty-aware probabilistic loss function. J. Chem. Inf. Model. 62, 2316–2331 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hou, R., Xie, C., Gui, Y., Li, G. & Li, X. Machine-learning-based data analysis method for cell-based selection of DNA-encoded libraries. ACS Omega 8, 19057–19071 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ratnayake, A. S. et al. A solution phase platform to characterize chemical reaction compatibility with DNA-encoded chemical library synthesis. ACS Comb. Sci. 21, 650–655 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Satz, A. L. et al. DNA compatible multistep synthesis and applications to DNA encoded libraries. Bioconjug. Chem. 26, 1623–1632 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Fitzgerald, P. R. & Paegel, B. M. DNA-encoded chemistry: drug discovery from a few good reactions. Chem. Rev. 121, 7155–7177 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Fitzgerald, P. R., Dixit, A., Zhang, C., Mobley, D. L. & Paegel, B. M. Building block-centric approach to DNA-encoded library design. J. Chem. Inf. Model. 64, 4661–4672 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kivioja, T. et al. Counting absolute number of molecules using unique molecular identifiers. Nat. Methods https://doi.org/10.1038/npre.2011.5903.1 (2011).

  42. MacConnell, A. B. & Paegel, B. M. Poisson statistics of combinatorial library sampling predict false discovery rates of screening. ACS Comb. Sci. 19, 524–532 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mikkelsen, R. J. T., Grier, K. E., Mortensen, K. T., Nielsen, T. E. & Qvortrup, K. Photolabile linkers for solid-phase synthesis. ACS Comb. Sci. 20, 377–399 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. ChaAn, T. R., Hilgraf, R., Sharpless, K. B. & Fokin, V. V. Polytriazoles as copper(I)‐stabilizing ligands in catalysis. Organic Lett. 6, 2853–2855 (2004).

    Article  Google Scholar 

  45. Dixit, A., Cavett, V. & Paegel, B. M. NGS decoding example script (Python). Figshare https://figshare.com/s/425bb12ef2b5f20bb856 (2024).

  46. Dixit, A. & Paegel, B. M. Raw data. Figshare https://figshare.com/s/5453000e506029b5298c (2024).

Download references

Acknowledgements

This work was supported by a grant award from the National Institutes of Health (grant no. GM140890) to B.M.P.

Author information

Authors and Affiliations

Authors

Contributions

A.D. collected and analyzed data and prepared a preliminary draft of the manuscript with guidance from B.M.P. All authors read, edited and approved the final manuscript.

Corresponding author

Correspondence to Brian M. Paegel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Xiaojie Lu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Barhoosh, H. et al. ACS Cent Sci. 10, 1960–1968 (2024): https://doi.org/10.1021/acscentsci.4c01218

Fitzgerald, P. et al. ACS Med. Chem. Lett. 14, 1295–1303 (2023): https://doi.org/10.1021/acsmedchemlett.3c00159

Hackler, A. et al. ACS Comb Sci. 22, 25–34 (2020): https://doi.org/10.1021/acscombsci.9b00153

Supplementary information

Supplementary Information

Supplementary Tables 1–6 and Figs. 1–7.

Source data

Source Data Fig. 4

Source plots for chromatography plots and mass spectral data.

Source Data Fig. 6

Unprocessed PAGE gels and source MALDI-TOF MS data for figure. Available in Supplementary Information as well.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixit, A., Paegel, B.M. Solid-phase DNA-encoded library synthesis: a master builder’s instructions. Nat Protoc (2025). https://doi.org/10.1038/s41596-025-01190-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-025-01190-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing