Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Preparation and biomedical applications of single-metal atom catalysts

Abstract

Nanocatalysts, including nanozymes, photocatalysts and sonocatalysts, have been investigated to trigger catalytic reactions in vivo to regulate biological microenvironments and stimulate therapeutic effects. Compared with lower metal atom utilization rate and catalytic activity of conventional nanocatalysts, single-metal atom catalysts (SACs) usually possess higher catalytic activity and selectivity owing to their well-defined structures and maximized atom utilization. Their properties are, however, strongly dependent on their composition and the preparation procedure. Here we describe the design, preparation and functionalization of SACs with single-metal atoms positioned within nitrogen-doped carbon supports. The SACs are prepared by pyrolysis of zeolitic imidazolate framework-8 (ZIF-8) or polydopamine-derived materials. Their properties depend on, for example, the metal chosen and atoms available for coordination; four example procedures are described: Cu–N4 from Cu–ZIF-8, Ir–N5 from Ir@ZIF-8 plus melamine, Co–PN3 from triphenylphosphine@Co-ZIF-8 and Cu–SN3 from ZnS@Cu-polydopamine. These SACs need to be functionalized to, for example, reduce aggregation and in vivo corona formation before they can be used in biological applications. In this Protocol, functionalization with the proteins (that is, cholesterol oxidase and pyruvate oxidase) is used as an example. The Protocol provides advice regarding physicochemical and functional characterization, as well as for performing experiments in tumor-bearing mice. The functional experiments were designed with the aim of identifying nanocatalysts with peroxidase-like activity that generate reactive oxygen species within areas of the tumor microenvironment that have increased levels of hydrogen peroxide. SAC synthesis takes 3–4 days, functional modification requires one extra day and the most basic and essential in vitro and in vivo assays require 2–3 months.

Key points

  • Single-metal atom catalysts exhibit enhanced catalytic activity and selectivity owing to their well-defined structures and maximized atom utilization, making them suitable for biomedical applications, especially in tumor treatment. The properties of single-metal atom catalysts are strongly dependent on their composition and preparation procedure.

  • This Protocol describes the design, preparation methods, functionalization strategies, physicochemical characterization, performance evaluation and biomedical application operations of single-metal atom catalysts based on nitrogen-doped carbon supports.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the structure and synthesis process of SACs.
Fig. 2: Block diagram of the designed protocol for the preparation and biomedical applications of SACs.
Fig. 3: Scheme for the synthesis of SACs.
Fig. 4: TEM images and XRD patterns of SACs.
Fig. 5: XAS characterization of Cu–N4 SACs.
Fig. 6: XAS characterization of Cu–SN3 SACs.
Fig. 7: XAS characterization of Ir–N5 SACs.
Fig. 8: XAS characterization of Co–PN3 SACs.
Fig. 9: Hydrodynamic size, Zeta potentials and POD-like properties of SACs.
Fig. 10: In vitro and in vivo anticancer effects.

Similar content being viewed by others

Data availability

The main data discussed in this protocol are available in the supporting primary research papers84,85,96. Source data are provided with this paper.

References

  1. Xia, Y. Nanomaterials at work in biomedical research. Nat. Mater. 7, 758–760 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Gao, X. et al. Inflammation-free electrochemical in vivo sensing of dopamine with atomic-level engineered antioxidative single-atom catalyst. Nat. Commun. 15, 7915 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang, R., Jiang, B., Fan, K., Gao, L. & Yan, X. Designing nanozymes for in vivo applications. Nat. Rev. Bioeng. 2, 849–868 (2024).

    Article  CAS  Google Scholar 

  4. Wu, J. et al. Enhancing radiation-resistance and peroxidase-like activity of single-atom copper nanozyme via local coordination manipulation. Nat. Commun. 15, 6174 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ye, T. et al. Protective effects of Pt-N-C single-atom nanozymes against myocardial ischemia–reperfusion injury. Nat. Commun. 15, 1682 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhen, W., Weichselbaum, R. R. & Lin, W. Nanoparticle-mediated radiotherapy remodels the tumor microenvironment to enhance antitumor efficacy. Adv. Mater. 35, 2206370 (2023).

    Article  CAS  Google Scholar 

  7. Zhou, Q. et al. Tumor abnormality-oriented nanomedicine design. Chem. Rev. 123, 10920–10989 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Guo, Y., Hu, P. & Shi, J. Nanomedicine remodels tumor microenvironment for solid tumor immunotherapy. J. Am. Chem. Soc. 146, 10217–10233 (2024).

    Article  CAS  PubMed  Google Scholar 

  9. Wei, H. & Wang, E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 42, 6060–6093 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Wu, J. et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev. 48, 1004–1076 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Wu, C. et al. A nonferrous ferroptosis-like strategy for antioxidant inhibition-synergized nanocatalytic tumor therapeutics. Sci. Adv. 7, eabj8833 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang, B., Chen, Y. & Shi, J. Nanocatalytic medicine. Adv. Mater. 31, 1901778 (2019).

    Article  Google Scholar 

  13. Hou, M., Wang, L., Chen, Y. & Shi, J. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 8, 357 (2017).

    Article  Google Scholar 

  14. Zhen, W. et al. Specific “unlocking” of a nanozyme-based butterfly effect to break the evolutionary fitness of chaotic tumors. Angew. Chem. Int. Ed. 59, 9491–9497 (2020).

    Article  CAS  Google Scholar 

  15. Zhang, Y. et al. Chirality-dependent reprogramming of macrophages by chiral nanozymes. Angew. Chem. Int. Ed. 62, e202307076 (2023).

    Article  CAS  Google Scholar 

  16. Yu, B., Wang, W., Sun, W., Jiang, C. & Lu, L. Defect engineering enables synergistic action of enzyme-mimicking active centers for high-efficiency tumor therapy. J. Am. Chem. Soc. 143, 8855–8865 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Li, M. et al. Structural design of single-atom catalysts for enhancing petrochemical catalytic reaction process. Adv. Mater. 36, 2313661 (2024).

    Article  CAS  Google Scholar 

  18. Lei, Z. et al. Single metal atoms catalysts—promising candidates for next generation energy storage and conversion devices. EcoMat 4, e12186 (2022).

    Article  CAS  Google Scholar 

  19. Chang, B., Zhang, L., Wu, S., Sun, Z. & Cheng, Z. Engineering single-atom catalysts toward biomedical applications. Chem. Soc. Rev. 51, 3688–3734 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Xia, Y., Sayed, M., Zhang, L., Cheng, B. & Yu, J. Single-atom heterogeneous photocatalysts. Chem Catal. 1, 1173–1214 (2021).

    Article  CAS  Google Scholar 

  21. Xiong, P. et al. Cytotoxicity of metal-based nanoparticles: from mechanisms and methods of evaluation to pathological manifestations. Adv. Sci. 9, 2106049 (2022).

    Article  CAS  Google Scholar 

  22. Yang, F., Deng, D., Pan, X., Fu, Q. & Bao, X. Understanding nano effects in catalysis. Natl. Sci. Rev. 2, 183–201 (2015).

    Article  CAS  Google Scholar 

  23. Zhang, T. Single-atom catalysis: far beyond the matter of metal dispersion. Nano Lett. 21, 9835–9837 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, D. & Zhao, Y. Single-atom engineering of metal–organic frameworks toward healthcare. Chem 7, 2635–2671 (2021).

    Article  CAS  Google Scholar 

  25. Fei, H. et al. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem. Soc. Rev. 48, 5207–5241 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun, T. et al. SACs on non-carbon substrates: can they outperform for water splitting? Adv. Funct. Mater. 33, 2301526 (2023).

    Article  CAS  Google Scholar 

  28. Song, W. et al. Review of carbon support coordination environments for single metal atom electrocatalysts (SACS). Adv. Mater. 36, 2301477 (2024).

    Article  CAS  Google Scholar 

  29. Liu, J. C., Tang, Y., Wang, Y. G., Zhang, T. & Li, J. Theoretical understanding of the stability of single-atom catalysts. Natl. Sci. Rev. 5, 638–641 (2018).

    Article  CAS  Google Scholar 

  30. Li, J. et al. Challenges and perspectives of single-atom-based catalysts for electrochemical reactions. JACS Au 3, 736–755 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, A., Li, J. & Zhang, T. Hererogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

    Article  CAS  Google Scholar 

  32. Liu, Y. et al. Multi-enzyme co-expressed dual-atom nanozymes induce cascade immunogenic ferroptosis via activating interferon-γ and targeting arachidonic acid metabolism. J. Am. Chem. Soc. 145, 8965–8978 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, Y. et al. Single-site nanozymes with a highly conjugated coordination structure for antitumor immunotherapy via cuproptosis and cascade-enhanced T lymphocyte activity. J. Am. Chem. Soc. 146, 3675–3688 (2024).

    Article  CAS  PubMed  Google Scholar 

  34. Shen, J. et al. Atomic engineering of single-atom nanozymes for biomedical applications. Adv. Mater. 36, 2313406 (2024).

    Article  CAS  Google Scholar 

  35. Jiao, L. et al. When nanozymes meet single-atom catalysis. Angew. Chem. Int. Ed. 59, 2565–2576 (2020).

    Article  CAS  Google Scholar 

  36. Huang, L., Chen, J., Gan, L., Wang, J. & Dong, S. Single-atom nanozymes. Sci. Adv. 5, eaav5490 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xue, Z. H., Luan, D., Zhang, H. & Lou, D. X. W. Single-atom catalysts for photocatalytic energy conversion. Joule 6, 92–133 (2022).

    Article  CAS  Google Scholar 

  38. Xu, L. H., Liu, W. & Liu, K. Single atom environmental catalysis: influence of supports and coordination environments. Adv. Funct. Mater. 33, 2304468 (2023).

    Article  CAS  Google Scholar 

  39. Yang, X. et al. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Wu, W., Huang, L., Wang, E. & Dong, S. Atomic engineering of single-atom nanozymes for enzyme-like catalysis. Chem. Sci. 11, 9741–9756 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, Y., Zhao, H. & Zhao, Y. Designing efficient single-metal atom biocatalysts at the atomic structure level. Angew. Chem. Int. Ed. 63, e202315933 (2024).

    Article  CAS  Google Scholar 

  42. Zhu, Y. et al. Engineering single-atom nanozymes for catalytic biomedical applications. Small 19, 2300750 (2023).

    Article  CAS  Google Scholar 

  43. Ohri, N., Hua, Y., Baidoun, R. & Kim, D. Pyrolytic synthesis of carbon-supported single-atom catalysts. Chem. Catal. 3, 100837 (2023).

    Article  CAS  Google Scholar 

  44. Han, A. et al. Recent advances for MOF-derived carbon-supported single-atom catalysts. Small Methods 3, 1800471 (2019).

    Article  Google Scholar 

  45. Li, J. et al. Regulating the atomic active center by covalent organic framework-derived photothermal nanozyme to arm self-gelling powder for bacterial wound healing. ACS Nano 8, 35606–35619 (2024).

    Article  Google Scholar 

  46. Sun, J. et al. Isolated single atoms anchored on N-doped carbon materials as a highly efficient catalyst for electrochemical and organic reactions. ACS Sustain. Chem. Eng. 8, 14630–14656 (2020).

    Article  CAS  Google Scholar 

  47. Qi, K., Chhowalla, M. & Voiry, D. Single atom is not alone: metal–support interactions in single-atom catalysis. Mater. Today 40, 173–192 (2020).

    Article  CAS  Google Scholar 

  48. Liang, X., Ji, S., Chen, Y. & Wang, D. Synthetic strategies for MOF-based single-atom catalysts for photo- and electro-catalytic CO2 reduction. iScience 25, 104177 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Peng, C., Pang, R., Li, J. & Wang, E. Current advances on the single-atom nanozyme and its bioapplications. Adv. Mater. 36, 2211724 (2023).

    Article  Google Scholar 

  50. Wang, Z. et al. Single-atom catalysts with ultrahigh catalase-like activity through electron filling and orbital energy regulation. Adv. Funct. Mater. 33, 2209560 (2023).

    Article  CAS  Google Scholar 

  51. Cui, X. et al. Rational coordination regulation in carbon-based single-metal-atom catalysts for electrocatalytic oxygen reduction reaction. Nano Converg. 9, 34 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cao, S. et al. A library of ROS-catalytic metalloenzyme mimics with atomic metal centers. Adv. Mater. 34, 2200255 (2022).

    Article  CAS  Google Scholar 

  53. Zoroddu, M. A. et al. The essential metals for humans: a brief overview. J. Inorg. Biochem. 195, 120–129 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Jomova, K. et al. Essential metals in health and disease. Chem. Biol. Interact. 367, 110173 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Liu, C. et al. Intrinsic activity of metal centers in metal–nitrogen–carbon single-atom catalysts for hydrogen peroxide synthesis. J. Am. Chem. Soc. 142, 21861–21871 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Fang, H., Banjade, H., Deepika & Jena, P. Realization of the Zn3+ oxidation state. Nanoscale 13, 14041–14048 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Lu, S., Chavan, S. M. & Yu, Z. Recent progress of 3d transition metal as single-atom catalysts for electrochemical CO2 reduction to CO. J. CO2 Util. 80, 102690 (2024).

    Article  CAS  Google Scholar 

  58. Maouche, C., Zhou, Y., Wang, Y. & Yang, J. Recent advances of the key parameters of 3d block transition metal single and dual atoms catalysts: from their synthesis to their practical applications. Mater. Today Sustain. 21, 100288 (2023).

    Google Scholar 

  59. Lu, X. et al. Evoking robust immunogenic cell death by synergistic sonodynamic therapy and glucose depletion using Au clusters/single atoms modified TiO2 nanosheets. Nano Res. 16, 9730–9742 (2023).

    Article  CAS  Google Scholar 

  60. Sharifi, M. et al. Gold nanozyme: biosensing and therapeutic activities. Mater. Sci. Eng. C 108, 110422 (2020).

    Article  CAS  Google Scholar 

  61. Zeng, X., Ruan, Y., Chen, Q., Yan, S. & Huang, W. Biocatalytic cascade in tumor microenvironment with a Fe2O3/Au hybrid nanozyme for synergistic treatment of triple negative breast cancer. Chem. Eng. J. 452, 138422 (2023).

    Article  CAS  Google Scholar 

  62. Li, L. et al. Ag/Pd bimetal nanozyme with enhanced catalytic and photothermal effects for ROS/hyperthermia/chemotherapy triple-modality antitumor therapy. Chem. Eng. J. 397, 125438 (2020).

    Article  CAS  Google Scholar 

  63. Xu, Q. et al. Tumor microenvironment-activated single-atom platinum nanozyme with H2O2 self-supplement and O2-evolving for tumor-specific cascade catalysis chemodynamic and chemoradiotherapy. Theranostics 12, 5155–5171 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chang, M. et al. Single-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy. Angew. Chem. Int. Ed. 60, 12971–12979 (2021).

    Article  CAS  Google Scholar 

  65. Cheng, J. et al. Boosting ferroptosis therapy with iridium single-atom nanocatalyst in ultralow metal content. Adv. Mater. 35, 2210037 (2023).

    Article  CAS  Google Scholar 

  66. Wang, D. et al. Employing noble metal-porphyrins to engineer robust and highly active single-atom nanozymes for targeted catalytic therapy in nasopharyngeal carcinoma. Adv. Mater. 36, 2310033 (2023).

    Article  Google Scholar 

  67. Bhalothia, D., Beniwal, A., Saravanan, P. K., Chen, P. & Chen, T. Bridging the gap between single atoms, atomic clusters and nanoparticles in electrocatalysis: hierarchical structured heterogeneous catalysts. ChemElectroChem 11, e202400034 (2024).

    Article  CAS  Google Scholar 

  68. Zhuang, J. & Wang, D. Recent advances of single-atom alloy catalyst: properties, synthetic methods and electrocatalytic applications. Mater. Today Catal. 2, 100009 (2023).

    Article  Google Scholar 

  69. Li, Z. Isogenous single atom catalysts (I-SACs): a significative new concept connecting nano-catalysts and SACs. Nano Energy 113, 108527 (2023).

    Article  CAS  Google Scholar 

  70. Hasija, V. et al. Covalent organic frameworks promoted single metal atom catalysis: strategies and applications. Coord. Chem. Rev. 452, 214298 (2022).

    Article  CAS  Google Scholar 

  71. Qu, W. et al. Progress in metal–organic-framework-based single-atom catalysts for environmental remediation. Coord. Chem. Rev. 474, 214855 (2023).

    Article  CAS  Google Scholar 

  72. Liu, M. et al. Dual atomic catalysts from COF-derived carbon for CO2RR by suppressing HER through synergistic effects. Carbon Energy 5, e300 (2023).

    Article  CAS  Google Scholar 

  73. Gloag, L., Somerville, S. V., Gooding, J. J. & Tilley, R. D. Co-catalytic metal–support interactions in single-atom electrocatalysts. Nat. Rev. Mater. 9, 173–189 (2024).

    Article  CAS  Google Scholar 

  74. Zhang, H., Lu, X. F., Wu, Z. P. & Lou, D. X. W. Emerging multifunctional single-atom catalysts/nanozymes. ACS Cent. Sci. 6, 1288–1301 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang, S. et al. Isolated single-atom Ni–N5 catalytic site in hollow porous carbon capsules for efficient lithium–sulfur batteries. Nano Lett. 21, 9691–9698 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Li, G. et al. Dimensionality engineering of single-atom nanozyme for efficient peroxidase-mimicking. J. Am. Chem. Soc. 145, 16835–16842 (2023).

    Article  CAS  PubMed  Google Scholar 

  77. Shan, J. et al. Metal–metal interactions in correlated single-atom catalysts. Sci. Adv. 8, eabo0762 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Qu, Q., Ji, S., Chen, Y., Wang, D. & Li, Y. The atomic-level regulation of single-atom site catalysts for the electrochemical CO2 reduction reaction. Chem. Sci. 12, 4201–4215 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu, P. & Zheng, N. Coordination chemistry of atomically dispersed catalysts. Natl. Sci. Rev. 5, 636–638 (2018).

    Article  CAS  Google Scholar 

  80. Zhang, W. et al. Spontaneous weaving of graphitic carbon networks synthesized by pyrolysis of ZIF-67 crystals. Angew. Chem. Int. Ed. 56, 8435–8440 (2017).

    Article  CAS  Google Scholar 

  81. Wang, K., Hui, K. N., Hui, K. S., Peng, S. & Xu, Y. Recent progress in metal–organic framework/graphene-derived materials for energy storage and conversion: design, preparation, and application. Chem. Sci. 12, 5737–5766 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Huang, Y. et al. Catalysts by pyrolysis: transforming metal–organic frameworks (MOFs) precursors into metal–nitrogen–carbon (M–N–C) materials. Mater. Today 69, 66–78 (2023).

    Article  CAS  Google Scholar 

  83. Hou, M., Wang, L., Wang, Y., Chen, Y. & Shi, J. Nanocatalytic tumor therapy by single-atom catalysts. ACS Nano 13, 2643–2653 (2019).

    Google Scholar 

  84. Niu, R. et al. Programmed targeting pyruvate metabolism therapy amplified single-atom nanozyme-activated pyroptosis for immunotherapy. Adv. Mater. 36, 2312124 (2024).

    Article  CAS  Google Scholar 

  85. Liu, Y. et al. Multi-enzyme co-expressed nanomedicine for anti-metastasis tumor therapy by up-regulating cellular oxidative stress and depleting cholesterol. Adv. Mater. 36, 2307752 (2024).

    Article  CAS  Google Scholar 

  86. Liu, Y., Yao, M., Han, W., Zhang, H. & Zhang, S. Construction of a single-atom nanozyme for enhanced chemodynamic therapy and chemotherapy. Chem. Eur. J. 27, 13418 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Cai, R. & Chen, C. The crown and the scepter: roles of the protein corona in nanomedicine. Adv. Mater. 31, 1805740 (2019).

    Article  CAS  Google Scholar 

  88. Mahmoudi, M., Landry, M. P., Moore, A. & Coreas, R. The protein corona from nanomedicine to environmental science. Nat. Rev. Mater. 8, 422–438 (2023).

    Article  Google Scholar 

  89. Fleischer, C. & Payne, C. Nanoparticle-cell interactions: molecular structure of the protein corona and cellular outcomes. Acc. Chem. Res. 47, 2651–2659 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li, H. et al. The protein corona and its effects on nanoparticle-based drug delivery systems. Acta Biomater. 129, 57–72 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Debayle, M. et al. Zwitterionic polymer ligands: an ideal surface coating to totally suppress protein–nanoparticle corona formation? Biomaterials 219, 119357 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. García, K. P. et al. Zwitterionic-coated “Stealth” nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small 10, 2516–2529 (2014).

    Article  Google Scholar 

  93. Barz, M., Parak, W. J. & Zentel, R. Concepts and approaches to reduce or avoid protein corona formation on nanoparticles: challenges and opportunities. Adv. Sci. 11, 2402935 (2024).

    Article  CAS  Google Scholar 

  94. Pino, P. D. et al. Protein corona formation around nanoparticles—from the past to the future. Mater. Horiz. 1, 301–313 (2014).

    Article  Google Scholar 

  95. Stern, A., Petersen, A. P., Zierden, H. C. & Duncan, G. A. The mucosal protein corona in local nanoparticle drug delivery. Cell Biomater. 1, 100043 (2025).

    Article  Google Scholar 

  96. Liu, Y. et al. Single-atom nanozyme with asymmetric electron distribution for tumor catalytic therapy by disrupting tumor redox and energy metabolism homeostasis. Adv. Mater. 35, 2208512 (2023).

    Article  CAS  Google Scholar 

  97. Chang, M. et al. Cu single atom nanozyme based high-efficiency mild photothermal therapy through cellular metabolic regulation. Angew. Chem. Int. Ed. 61, e202209245 (2022).

    Article  CAS  Google Scholar 

  98. Liu, Y. et al. Single-site nanozyme with exposed unsaturated Cu-O2 sites for tumor therapy by coordinating innate immunity and vasculature normalization. Chem 11, 102297 (2025).

    Article  CAS  Google Scholar 

  99. Liu, Y. et al. A Wurster-type covalent organic framework with internal electron transfer-enhanced catalytic capacity for tumor therapy. J. Am. Chem. Soc. 146, 27345–27361 (2024).

    Article  CAS  PubMed  Google Scholar 

  100. Wang, D. et al. Missing-linker-confined single-atomic Pt nanozymes for enzymatic theranostics of tumor. Angew. Chem. Int. Ed. 62, e202217995 (2023).

    Article  CAS  Google Scholar 

  101. Wang, D. et al. Self-assembled single-site nanozyme for tumor-specific amplified cascade enzymatic therapy. Angew. Chem. Int. Ed. 60, 3001–3007 (2021).

    Article  CAS  Google Scholar 

  102. Wang, D. et al. Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nat. Commun. 11, 357 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Liao, G. et al. Emerging carbon-supported single-atom catalysts for biomedical applications. Matter 5, 3341–3374 (2022).

    Article  CAS  Google Scholar 

  104. Xu, B. et al. A bioinspired five-coordinated single-atom iron nanozyme for tumor catalytic therapy. Adv. Mater. 34, 2107088 (2022).

    Article  CAS  Google Scholar 

  105. Lu, X. et al. Bridging oxidase catalysis and oxygen reduction electrocatalysis by model single-atom catalysts. Natl. Sci. Rev. 9, nwac022 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rocha, G. F. S. R. et al. Carbon nitride based materials: more than just a support for single-atom catalysis. Chem. Soc. Rev. 52, 4878–4932 (2023).

    Article  CAS  PubMed  Google Scholar 

  107. Netea-Maier, R. T., Smit, J. W. A. & Netea, M. G. Metabolic changes in tumor cells and tumor-associated macrophages: a mutual relationship. Cancer Lett. 413, 102–109 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Che, W., Tao, T. & Baek, J. B. Strategies for boosting the activity of single-atom catalysts for future energy applications. J. Mater. Chem. A 10, 10297–10325 (2022).

    Article  CAS  Google Scholar 

  109. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Ball, P. Single-atom catalysis: a new field that learns from tradition. Natl. Sci. Rev. 5, 690–693 (2018).

    Article  CAS  Google Scholar 

  111. Jiang, B. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 13, 1506–1520 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Zheng, J. et al. Optimizing the standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 19, 3470–3488 (2024).

    Article  CAS  PubMed  Google Scholar 

  113. Wang, X. et al. Copper single-atom catalysts with photothermal performance and enhanced nanozyme activity for bacteria-infected wound therapy. Bioact. Mater. 6, 4389–4401 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Xu, B. et al. A single-atom nanozyme for wound disinfection applications. Angew. Chem. Int. Ed. 58, 4911–4916 (2019).

    Article  CAS  Google Scholar 

  115. Lan, X., Chen, M., He, X., Gao, S. & Zhao, X. Single atom nanozymes for bacterial infection therapy. Biomater. Sci. 12, 108–115 (2024).

    Article  CAS  Google Scholar 

  116. Li, B. et al. Single-atom nanocatalytic therapy for suppression of neuroinflammation by inducing autophagy of abnormal mitochondria. ACS Nano 17, 7511–7529 (2023).

    Article  CAS  PubMed  Google Scholar 

  117. Jiang, G. et al. Emerging nanozymes in neurological disorder therapeutics: bridging oxidoreductase mimicry and antioxidant chemistry. Adv. Funct. Mater. 34, 2405190 (2024).

    Article  CAS  Google Scholar 

  118. Goel, H., Rana, I., Jain, K., Ranjan, K. R. & Mishra, V. Atomically dispersed single-atom catalysts (SACs) and enzymes (SAzymes): synthesis and application in Alzheimer’s disease detection. J. Mater. Chem. B 12, 10466–10489 (2024).

    Article  CAS  PubMed  Google Scholar 

  119. Lu, X. et al. Single-atom catalysts-based catalytic ROS clearance for efficient psoriasis treatment and relapse prevention via restoring ESR1. Nat. Commun. 14, 6767 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Huang, F. et al. Dual-site biomimetic Cu/Zn-MOF for atopic dermatitis catalytic therapy via suppressing FcγR-mediated phagocytosis. J. Am. Chem. Soc. 146, 3186–3199 (2024).

    Article  CAS  PubMed  Google Scholar 

  121. Yang, X. et al. PdZn/CoSA-NC nanozymes with highly efficient SOD/CAT activities for treatment of osteoarthritis via regulating immune microenvironment. Adv. Funct. Mater. 34, 2401963 (2024).

    Article  CAS  Google Scholar 

  122. Jiao, L. et al. Single-atom catalysts boost signal amplification for biosensing. Chem. Soc. Rev. 50, 750–765 (2021).

    Article  CAS  PubMed  Google Scholar 

  123. Zhang, X. et al. Single-atom nanozymes: a rising star for biosensing and biomedicine. Coord. Chem. Rev. 418, 213376 (2020).

    Article  CAS  Google Scholar 

  124. Zhang, L. et al. Drug-primed self-assembly of platinum-single-atom nanozyme to regulate cellular redox homeostasis against cancer. Adv. Sci. 10, 2302703 (2023).

    Article  CAS  Google Scholar 

  125. Li, D. et al. Mechanism of the application of single-atom catalyst-activated PMS/PDS to the degradation of organic pollutants in water environment: a review. J. Clean. Prod. 397, 136468 (2023).

    Article  CAS  Google Scholar 

  126. Liu, H. et al. Single atom catalysts for organic pollutant degradation. J. Environ. Chem. Eng. 11, 110573 (2023).

    Article  CAS  Google Scholar 

  127. Shang, Y., Xu, X., Gao, B., Wang, S. & Duan, X. Single-atom catalysis in advanced oxidation processes for environmental remediation. Chem. Soc. Rev. 50, 5281–5322 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Ling, L. L. et al. Promoted hydrogenation of CO2 to methanol over single-atom Cu sites with Na+-decorated microenvironment. Natl. Sci. Rev. 11, nwae114 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhang, J., Cai, W., Hu, F. X., Yang, H. & Liu, B. Recent advances in single atom catalysts for the electrochemical carbon dioxide reduction reaction. Chem. Sci. 12, 6800–6819 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Liu, J. et al. Rare earth single-atom catalysts for nitrogen and carbon dioxide reduction. ACS Nano 14, 1093–1101 (2020).

    Article  CAS  PubMed  Google Scholar 

  131. Zhang, C. et al. Single-atom catalysts for hydrogen generation: rational design, recent advances, and perspectives. Adv. Energy Mater. 12, 2200875 (2022).

    Article  CAS  Google Scholar 

  132. Wang, Z. et al. Rational design principles of single-atom catalysts for hydrogen production and hydrogenation. Energy Environ. Sci. 17, 8019–8056 (2024).

    Article  CAS  Google Scholar 

  133. Lu, L. et al. Progress on single-atom photocatalysts for H2 generation: material design, catalytic mechanism, and perspectives. Small Methods 7, 2300430 (2023).

    Article  CAS  Google Scholar 

  134. Li, X. et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis. J. Am. Chem. Soc. 140, 12469–12475 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. Shang, H. et al. Engineering unsymmetrically coordinated Cu–S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 11, 3049 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Li, Z. et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nat. Chem. 12, 764–772 (2020).

    Article  PubMed  Google Scholar 

  137. Wan, J. et al. In situ phosphatizing of triphenylphosphine encapsulated within metal–organic frameworks to design atomic Co1–P1N3 interfacial structure for promoting catalytic performance. J. Am. Chem. Soc. 142, 8431–8439 (2020).

    Article  CAS  PubMed  Google Scholar 

  138. Cornacchione, L. & Hu, L. Hydrogen peroxide-producing pyruvate oxidase from Lactobacillus delbrueckii is catalytically activated by phosphotidylethanolamine. BMC Microbiol. 20, 128 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Xing, L. et al. Top-down synthetic strategies toward single atoms on the rise. Matter 5, 788–807 (2022).

    Article  CAS  Google Scholar 

  140. Chen, Y. et al. Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2, 1242–1264 (2018).

    Article  CAS  Google Scholar 

  141. Ji, S. et al. Chemical synthesis of single atomic site catalysts. Chem. Rev. 120, 11900–11955 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Qu, Y. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 1, 781–786 (2018).

    Article  CAS  Google Scholar 

  143. Zhang, L., Han, L., Liu, H., Liu, X. & Luo, J. Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angew. Chem. Int. Ed. 56, 13694–13698 (2017).

    Article  CAS  Google Scholar 

  144. Khan, K. et al. Laser-irradiated holey graphene-supported single-atom catalyst towards hydrogen evolution and oxygen reduction. Adv. Energy Mater. 11, 2101619 (2021).

    Article  CAS  Google Scholar 

  145. Wang, H. et al. Ball-milling induced debonding of surface atoms from metal bulk for construing high-performance dual-site single-atom catalysts. Angew. Chem. Int. Ed. 60, 23154–23158 (2021).

    Article  CAS  Google Scholar 

  146. Qu, Y. et al. Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal. J. Am. Chem. Soc. 141, 4505–4509 (2019).

    Article  CAS  PubMed  Google Scholar 

  147. Zhou, P. et al. Thermolysis of noble metal nanoparticles into electron-rich phosphorus-coordinated noble metal single atoms at low temperature. Angew. Chem. Int. Ed. 58, 14184–14188 (2019).

    Article  CAS  Google Scholar 

  148. Yang, Z. et al. Directly transforming copper (I) oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach. Nat. Commun. 10, 3734 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Hu, Y. et al. Mechanochemical preparation of single atom catalysts for versatile catalytic applications: a perspective review. Mater. Today 63, 288–312 (2023).

    Article  Google Scholar 

  150. Sun, J. et al. Electrochemical knocking-down of Zn metal clusters into single atoms. Nano Lett. 24, 5206–5213 (2024).

    Article  CAS  PubMed  Google Scholar 

  151. Jiao, L. & Jiang, H. Metal–organic-framework-based single-atom catalysts for energy applications. Chem 5, 786–804 (2019).

    Article  CAS  Google Scholar 

  152. He, T. et al. Porphyrin-based covalent organic frameworks anchoring Au single atoms for photocatalytic nitrogen fixation. J. Am. Chem. Soc. 145, 6057–6066 (2023).

    Article  CAS  PubMed  Google Scholar 

  153. Kaiser, S., Chen, Z., Akl, D. F., Mitchell, S. & Pérez-Ramírez, J. Single-atom catalysts across the periodic table. Chem. Rev. 120, 11703–11809 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. Xie, F. et al. A general approach to 3D-printed single-atom catalysts. Nat. Synth. 2, 129–139 (2023).

    Article  CAS  Google Scholar 

  155. Xia, C. et al. General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nat. Chem. 13, 887–894 (2021).

    Article  CAS  PubMed  Google Scholar 

  156. Wu, Y. et al. Atomic-level regulation strategies of single-atom catalysts: nonmetal heteroatom doping and polymetallic active site construction. Chem. Catal. 3, 100586 (2023).

    Article  CAS  Google Scholar 

  157. Fang, X. et al. Single Pt atoms confined into a metal–organic framework for efficient photocatalysis. Adv. Mater. 30, 1705112 (2018).

    Article  Google Scholar 

  158. Han, Y. et al. Hollow N-doped carbon spheres with isolated cobalt single atomic sites: superior electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 139, 17269–17272 (2017).

    Article  CAS  PubMed  Google Scholar 

  159. Xie, X. et al. MIL-101-derived mesoporous carbon supporting highly exposed Fe single-atom sites as efficient oxygen reduction reaction catalysts. Adv. Mater. 33, 2101038 (2021).

    Article  CAS  Google Scholar 

  160. Wang, G. et al. Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels. J. Am. Chem. Soc. 142, 19339–19345 (2020).

    Article  CAS  PubMed  Google Scholar 

  161. Han, G. F. et al. Abrading bulk metal into single atoms. Nat. Nanotechnol. 17, 403–407 (2022).

    Article  CAS  PubMed  Google Scholar 

  162. Zhan, Q. N. et al. Syntheses and applications of single-atom catalysts for electrochemical energy conversion reactions. Chin. J. Catal. 47, 32–66 (2023).

    Article  CAS  Google Scholar 

  163. Jiao, L. et al. Nanocasting SiO2 into metal–organic frameworks imparts dual protection to high-loading Fe single-atom electrocatalysts. Nat. Commun. 11, 2831 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Niu, R., Liu, Y., Wang, Y. & Zhang, H. An Fe-based single-atom nanozyme with multi-enzyme activity for parallel catalytic therapy via a cascade reaction. Chem. Commun. 58, 7924–7927 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation Singapore under its Competitive Research Programme (grant no. NRF-CRP26-2021-0002).

Author information

Authors and Affiliations

Authors

Contributions

Y.L. and R.N. contributed equally to this work. All authors contributed to developing this protocol and writing this paper. Y.W., H.Z. and Y.Z. supervised the project.

Corresponding author

Correspondence to Yanli Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Ilaria Armenia, Stefano Fedeli, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Niu, R. et al. Adv. Mater. 36, 2312124 (2024): https://doi.org/10.1002/adma.202312124

Liu, Y. et al. Adv. Mater. 35, 2208512 (2023): https://doi.org/10.1002/adma.202208512

Liu, Y. et al. Adv. Mater. 36, 2307752 (2024): https://doi.org/10.1002/adma.202307752

Supplementary information

Source data

Source Data Figs. 4–10

Statistical source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Niu, R., Wang, Y. et al. Preparation and biomedical applications of single-metal atom catalysts. Nat Protoc (2025). https://doi.org/10.1038/s41596-025-01199-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-025-01199-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing