Abstract
Fossils preserve crucial information about the underlying biological and ecological processes of past ecosystems. Models built on paleontological and paleoecological data can help to elucidate the factors influencing ecosystem health, stability, resilience and function, offering a unique perspective on the long-term ecological impacts of the ongoing human-induced biodiversity crisis and ecosystem degradation. Substantial advances have been made in quantifying the ecological dynamics and functional structures of paleocommunities. However, the effective reconstruction of paleo-food webs and the quantitative evaluation of paleocommunity dynamics are still challenging tasks. Here we present a detailed protocol for reconstructing paleo-food webs using fossil data and for modeling the stability and structures of these paleocommunities using the cascading extinction on graphs model. The procedure includes (1) selecting an appropriate geological time range and geographic scope, collecting fossil data and reconstructing paleocommunities; (2) assigning species to guilds on the basis of shared prey–predator relationships and connecting the guilds that interacted trophically; (3) measuring the functional structures and modeling their dynamics using species-level networks and cascading extinction on graphs models; and (4) analyzing the results to understand the community evolution and identify tipping points that predict ecosystem collapse. Organismal expertise is needed in the reconstruction of paleo-food webs. The resulting comparisons of the paleocommunity stability and structure can help calibrate the timing and patterns of ecological changes during critical intervals in Earth history. This Protocol aims to enhance the utilization of ecological modeling in understanding the evolution of ancient ecosystems. The time required for the protocol is community size dependent — for example, ~5 months for communities containing ~1,000 species.
Key points
-
This Protocol provides detailed steps for reconstructing paleo-food webs using fossil data and modeling the stability and structures of these food webs to environmental disturbances using the cascading extinction on graphs model.
-
This approach can be used to identify tipping points of ecosystem collapse and is applicable to both events from the distant past and those from the present.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout












Similar content being viewed by others
Data availability
All the data52 used in this protocol are available via Open Science Framework (OSF) at: https://osf.io/fqg37/.
Code availability
All the code used in this protocol is available via Open Science Framework (OSF) at: https://proc.io/fqg37/. The code in this protocol has been peer-reviewed.
References
del Monte-Luna, P. et al. A review of recent and future marine extinctions. Camb. Prism. Extinct. 1, e13 (2023).
Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).
Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).
Ceballos, G. & Ehrlich, P. R. Mutilation of the tree of life via mass extinction of animal genera. Proc. Natl Acad. Sci. USA 120, e2306987120 (2023).
Ceballos, G., Ehrlich, P. R. & Raven, P. H. Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proc. Natl Acad. Sci. USA 117, 13596–13602 (2020).
Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).
Rybicki, J., Abrego, N. & Ovaskainen, O. Habitat fragmentation and species diversity in competitive communities. Ecol. Lett. 23, 506–517 (2020).
Sax, D. F. & Gaines, S. D. Species invasions and extinction: the future of native biodiversity on islands. Proc. Natl Acad. Sci. USA 105, 11490–11497 (2008).
Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: the bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37, 25–50 (2012).
Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).
Wake, D. B. & Vredenburg, V. T. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl Acad. Sci. USA 105, 11466–11473 (2008).
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).
Butchart, S. H. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).
Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).
De Vos, J. M., Joppa, L. N., Gittleman, J. L., Stephens, P. R. & Pimm, S. L. Estimating the normal background rate of species extinction. Conserv. Biol. 29, 452–462 (2015).
Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).
Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012).
Lenton, T. M. et al. Climate tipping points—too risky to bet against. Nature 575, 592–595 (2019).
Payne, J. L., Bachan, A., Heim, N. A., Hull, P. M. & Knope, M. L. The evolution of complex life and the stabilization of the Earth system. Interface Focus 10, 20190106 (2020).
Sepkoski, J. J. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology 10, 246–267 (1984).
Hull, P. Life in the aftermath of mass extinctions. Curr. Biol. 25, R941–R952 (2015).
Angielczyk, K. D. & Walsh, M. L. Patterns in the evolution of nares size and secondary palate length in anomodont therapsids (Synapsida): implications for hypoxia as a cause of end-Permian tetrapod extinctions. J. Paleontol. 82, 528–542 (2008).
Roopnarine, P. D., Angielczyk, K. D., Wang, S. C. & Hertog, R. Trophic network models explain instability of Early Triassic terrestrial communities. Proc. R. Soc. Lond. Ser. B 274, 2077–2086 (2007).
Chen, Z.-Q. & Benton, M. J. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat. Geosci. 5, 375–383 (2012).
Zhang, X. & Shu, D. Current understanding on the Cambrian Explosion: questions and answers. PalZ 95, 641–660 (2021).
Miller, A. I. & Foote, M. Calibrating the Ordovician radiation of marine life: implications for Phanerozoic diversity trends. Paleobiology 22, 304–309 (1996).
Marshall, C. R. Forty years later: the status of the “Big Five” mass extinctions. Camb. Prism. Extinct. 1, e5 (2023).
Jablonski, D. Lessons from the past: evolutionary impacts of mass extinctions. Proc. Natl Acad. Sci. USA 98, 5393–5398 (2001).
Payne, J. L. & Clapham, M. E. End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Annu. Rev. Earth Planet. Sci. 40, 89–111 (2012).
Harnik, P. G. et al. Extinctions in ancient and modern seas. Trends Ecol. Evol. 27, 608–617 (2012).
Roopnarine, P. D., Banker, R. M. W. & Sampson, S. D. Impact of the extinct megaherbivore Steller’s sea cow (Hydrodamalis gigas) on kelp forest resilience. Front. Ecol. Evol. 10, (2022).
Foote, M. Perspective: evolutionary patterns in the fossil record. Evolution 50, 1–11 (1996).
Alroy, J. et al. Phanerozoic trends in the global diversity of marine invertebrates. Science 321, 97–100 (2008).
Benton, M. J. Diversification and extinction in the history of life. Science 268, 52–58 (1995).
Stanley, S. M. Memoir 4: an analysis of the history of marine animal diversity. Paleobiology 33, 1–55 (2007).
Bambach, R. K., Bush, A. M. & Erwin, D. H. Autecology and the filling of ecospace: key metazoan radiations. Palaeontology 50, 1–22 (2007).
Alvarez, S. A. et al. Diversity decoupled from ecosystem function and resilience during mass extinction recovery. Nature 574, 242–245 (2019).
Droser, M. L., Bottjer, D. J., Sheehan, P. M. & McGhee, G. R. Jr Decoupling of taxonomic and ecologic severity of Phanerozoic marine mass extinctions. Geology 28, 675–678 (2000).
Knope, M. L., Heim, N. A., Frishkoff, L. O. & Payne, J. L. Limited role of functional differentiation in early diversification of animals. Nat. Commun. 6, 6455 (2015).
Foster, W. J. & Twitchett, R. J. Functional diversity of marine ecosystems after the Late Permian mass extinction event. Nat. Geosci. 7, 233–238 (2014).
Lawton, J. H. Are there general laws in ecology? Oikos 84, 177 (1999).
Schleuning, M., Fründ, J. & García, D. Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of trait‐based concepts to plant–animal interactions. Ecography 38, 380–392 (2015).
Worden, A. Z. et al. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015).
Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016).
Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory: the role of connectance and size. Proc. Natl Acad. Sci. USA 99, 12917–12922 (2002).
Neutel, A.-M., Heesterbeek, J. A. & De Ruiter, P. C. Stability in real food webs: weak links in long loops. Science 296, 1120–1123 (2002).
Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs. Nature 404, 180–183 (2000).
Shaw, J. O. et al. Disentangling ecological and taphonomic signals in ancient food webs. Paleobiology 47, 385–401 (2021).
Banker, R. M. W., Dineen, A. A., Sorman, M. G., Tyler, C. L. & Roopnarine, P. D. Beyond functional diversity: The importance of trophic position to understanding functional processes in community evolution. Front. Ecol. Evol. 10, 983374 (2022).
Angielczyk, K. D., Roopnarine, P. D. & Wang, S. C. Modeling the role of primary productivity disruption in end-Permian extinctions, Karoo Basin, South Africa. N. Mex. Mus. Nat. Hist. Sci. Bull. 30, 16–23 (2005).
Mitchell, J. S., Roopnarine, P. D. & Angielczyk, K. D. Late Cretaceous restructuring of terrestrial communities facilitated the end-Cretaceous mass extinction in North America. Proc. Natl Acad. Sci. USA 109, 18857–18861 (2012).
Huang, Y. et al. The stability and collapse of marine ecosystems during the Permian–Triassic mass extinction. Curr. Biol. 33, 1059–1070.e4 (2023).
Stanton, R. J. & Nelson, P. C. Reconstruction of the trophic web in paleontology: community structure in the Stone City Formation (middle Eocene, Texas). J. Paleontol. 54, 118–135 (1980).
Martill, D. M., Taylor, M. A., Duff, K. L., Riding, J. B. & Bown, P. R. The trophic structure of the biota of the Peterborough Member, Oxford Clay Formation (Jurassic), UK. J. Geol. Soc. 151, 173–194 (1994).
Roopnarine, P. D. Extinction cascades and catastrophe in ancient food webs. Paleobiology 32, 1–19 (2006).
Dunne, J. A., Williams, R. J., Martinez, N. D., Wood, R. A. & Erwin, D. H. Compilation and network analyses of Cambrian food webs. PloS Biol. 6, e102 (2008).
Dunne, J. A., Labandeira, C. C. & Williams, R. J. Highly resolved early Eocene food webs show development of modern trophic structure after the end-Cretaceous extinction. Proc. R. Soc. Lond. Ser. B 281, 20133280 (2014).
Muscente, A. D. et al. Exceptionally preserved fossil assemblages through geologic time and space. Gondwana Res 48, 164–188 (2017).
Hewitt, J. E., Ellis, J. I. & Thrush, S. F. Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems. Glob. Change Biol. 22, 2665–2675 (2016).
Roopnarine, P. D. & Dineen, A. A. in Marine Conservation Paleobiology (eds Tyler, C. L. & Schneider, C. L.) 105–141 (Springer, 2018).
Fernando Blanco et al. Punctuated ecological equilibrium in mammal communities over evolutionary time scales. Science 372, 300–303 (2021).
Mace, G. M., Norris, K. & Fitter, A. H. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. Evol. 27, 19–26 (2012).
Levin, S. A. Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1, 431–436 (1998).
Roopnarine, P. D. & Angielczyk, K. in Evolutionary Theory: A Hierarchical Perspective (eds. Eldredge, N. et al.) 307–333 (Univ. Chicago Press, 2016).
Knoll, A. H. Systems paleobiology. Geol. Soc. Am. Bull. 125, 3–13 (2013).
May, R. M. Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos. Science 186, 645–647 (1974).
Pimm, S. L. in Population and Community Biology 1–11 (Springer, 1982).
McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).
Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).
Bennington, J. B. et al. Critical issues of scale in paleoecology. Palaios 24, 1–4 (2009).
Valiente-Banuet, A. et al. Beyond species loss: the extinction of ecological interactions in a changing world. Funct. Ecol. 29, 299–307 (2015).
Vermeij, G. J. Ecological avalanches and the two kinds of extinction. Evol. Ecol. Res. 6, 315–337 (2004).
Roopnarine, P. Networks, extinction and paleocommunity food webs. quantitative methods in paleobiology. Paleont. Soc. Pap. 16, 143–161 (2010).
Deb, D. Trophic uncertainty vs parsimony in food web research. Oikos 78, 191–194 (1997).
Bentley, J. W. et al. Diet uncertainty analysis strengthens model-derived indicators of food web structure and function. Ecol. Indic. 98, 239–250 (2019).
Dunne, J. A. in Ecological Networks: Linking Structure to Dynamics in Food Webs (eds Pascual M. & Dunne J.A.) 27–82 (Oxford Univ. Press, 2006)
Humphries, M. M., Studd, E. K., Menzies, A. K. & Boutin, S. To everything there is a season: summer-to-winter food webs and the functional traits of keystone species. Integr. Comp. Biol. 57, 961–976 (2017).
Olivier, P. et al. Exploring the temporal variability of a food web using long‐term biomonitoring data. Ecography 42, 2107–2121 (2019).
Eveleigh, E. S. et al. Fluctuations in density of an outbreak species drive diversity cascades in food webs. Proc. Natl Acad. Sci. USA 104, 16976–16981 (2007).
Looy, C. V., Brugman, W. A., Dilcher, D. L. & Visscher, H. The delayed resurgence of equatorial forests after the Permian–Triassic ecologic crisis. Proc. Natl Acad. Sci. USA 96, 13857–13862 (1999).
Vajda, V. et al. End-Permian (252 Mya) deforestation, wildfires and flooding—an ancient biotic crisis with lessons for the present. Earth Planet. Sci. Lett. 529, 115875 (2020).
Vajda, V. & Bercovici, A. The global vegetation pattern across the Cretaceous–Paleogene mass extinction interval: a template for other extinction events. Glob. Planet. Change 122, 29–49 (2014).
Lei, Y. et al. Phytoplankton (acritarch) community changes during the Permian–Triassic transition in South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 519, 84–94 (2019).
Cui, C. & Cao, C. Increased aridity across the Permian–Triassic transition in the mid-latitude NE Pangea. Geol. J. 56, 6162–6175 (2021).
Roopnarine, P. D. et al. Comparative ecological dynamics of Permian–Triassic communities from the Karoo, Luangwa, and Ruhuhu Basins of Southern Africa. J. Vertebr. Paleontol. 37, 254–272 (2018).
Roopnarine, P. D. & Angielczyk, K. D. Community stability and selective extinction during the Permian–Triassic mass extinction. Science 350, 90–93 (2015).
Huang, Y. et al. Ecological dynamics of terrestrial and freshwater ecosystems across three mid-Phanerozoic mass extinctions from northwest China. Proc. R. Soc. B. 288, 20210148 (2021).
Kempf, H. L., Castro, I. O., Dineen, A. A., Tyler, C. L. & Roopnarine, P. D. Comparisons of Late Ordovician ecosystem dynamics before and after the Richmondian invasion reveal consequences of invasive species in benthic marine paleocommunities. Paleobiology 46, 320–336 (2020).
Barnosky, A. D. Megafauna biomass tradeoff as a driver of Quaternary and future extinctions. Proc. Natl Acad. Sci. USA 105, 11543–11548 (2008).
Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).
Plotnick, R. E., Smith, F. A. & Lyons, S. K. The fossil record of the sixth extinction. Ecol. Lett. 19, 546–553 (2016).
Galetti, M. et al. Ecological and evolutionary legacy of megafauna extinctions. Biol. Rev. 93, 845–862 (2018).
Calosi, P., Putnam, H. M., Twitchett, R. J. & Vermandele, F. Marine metazoan modern mass extinction: improving predictions by integrating fossil, modern, and physiological data. Annu. Rev. Mar. Sci. 11, 369–390 (2019).
Fricke, E. C. et al. Collapse of terrestrial mammal food webs since the Late Pleistocene. Science 377, 1008–1011 (2022).
Malanoski, C. M., Farnsworth, A., Lunt, D. J., Valdes, P. J. & Saupe, E. E. Climate change is an important predictor of extinction risk on macroevolutionary timescales. Science 383, 1130–1134 (2024).
Finnegan, S. et al. Using the fossil record to understand extinction risk and inform marine conservation in a changing world. Annu. Rev. Mar. Sci. 16, 307–333 (2024).
Hertog, R., Roopnarine, P. D., Wang, S. C., Angielczyk, K. D. & Olson, M. in Geological Society of America Abstracts with Programs Vol. 38 (ed. Wells, S. G.) 63 (2006).
Roopnarine, P. D. & Angielczyk, K. D. The evolutionary palaeoecology of species and the tragedy of the commons. Biol. Lett. 8, 147–150 (2012).
Zhang, M. Ecospace utilization and ecological stability modelling of the Cambrian Lagerstätten ecosystems. PhD thesis, China Univ. of Geosciences (2022).
DeSantis, L. R. Dental microwear textures: reconstructing diets of fossil mammals. Surf. Topogr. Metrol. 4, 023002 (2016).
Cerling, T. E. & Harris, J. M. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120, 347–363 (1999).
Sinclair, A. R., Mduma, S. & Brashares, J. S. Patterns of predation in a diverse predator–prey system. Nature 425, 288–290 (2003).
Cohen, J. E., Pimm, S. L., Yodzis, P. & Saldaña, J. Body sizes of animal predators and animal prey in food webs. J. Anim. Ecol. 67–78 (1993).
Brose, U. et al. Consumer–resource body‐size relationships in natural food webs. Ecology 87, 2411–2417 (2006).
Yodzis, P. in Food Webs: Integration of Patterns and Dynamics (eds Polis, G. A. & Winemiller, K. O.) 192–200 (Springer, 1996).
Briand, F. & Cohen, J. E. Community food webs have scale-invariant structure. Nature 307, 264–267 (1984).
Rasnitsyn, A. P. & Quicke, D. L. J. History of Insects (Springer, 2002).
Grimaldi, D. & Engel, M. S. Evolution of the Insects (Cambridge Univ. Press, 2005).
Li, C., Rieppel, O., Long, C. & Fraser, N. C. The earliest herbivorous marine reptile and its remarkable jaw apparatus. Sci. Adv. 2, e1501659 (2016).
Roopnarine, P. D. Ecological modeling of paleocommunity food webs. Paleont. Soc. Pap. 15, 195–220 (2009).
Dodson, P. Functional and ecological significance of relative growth in Alligator. J. Zool. 175, 315–355 (1975).
Erickson, G. M., Lappin, A. K. & Vliet, K. A. The ontogeny of bite-force performance in American alligator (Alligator mississippiensis). J. Zool. 260, 317–327 (2003).
Gignac, P. & Erickson, G. Ontogenetic changes in dental form and tooth pressures facilitate developmental niche shifts in American alligators. J. Zool. 295, 132–142 (2015).
Dunhill, A. M. et al. Extinction cascades, community collapse, and recovery across a Mesozoic hyperthermal event. Nat. Commun. 15, 8599 (2024).
Dunne, J. A. et al. The roles and impacts of human hunter-gatherers in North Pacific marine food webs. Sci. Rep. 6, 1–9 (2016).
García-Girón, J. et al. Shifts in food webs and niche stability shaped survivorship and extinction at the end-Cretaceous. Sci. Adv. 8, eadd5040 (2022).
Olóriz, F., Reolid, M. & Rodríguez-Tovar, F. J. Approaching trophic structure in Late Jurassic neritic shelves: a western Tethys example from southern Iberia. Earth-Sci. Rev. 79, 101–139 (2006).
Benton, M. J. et al. Exceptional vertebrate biotas from the Triassic of China, and the expansion of marine ecosystems after the Permo–Triassic mass extinction. Earth-Sci. Rev. 125, 199–243 (2013).
Sennikov, A. Evolution of the Permian and Triassic tetrapod communities of Eastern Europe. Palaeogeogr. Palaeoclimatol. Palaeoecol. 120, 331–351 (1996).
Zhang, Y., Zhan, R., Fan, J., Cheng, J. & Liu, X. Principal aspects of the Ordovician biotic radiation. Sci. China Earth Sci. 53, 382–394 (2010).
Kidwell, S. M. Time-averaging and fidelity of modern death assemblages: building a taphonomic foundation for conservation palaeobiology. Palaeontology 56, 487–522 (2013).
Kidwell, S. M. Time-averaged molluscan death assemblages: palimpsests of richness, snapshots of abundance. Geology 30, 803–806 (2002).
Kidwell, S. M. Preservation of species abundance in marine death assemblages. Science 294, 1091–1094 (2001).
Scheyer, T. M., Romano, C., Jenks, J. & Bucher, H. Early triassic marine biotic recovery: the predators’ perspective. PLoS ONE 9, e88987 (2014).
Stubbs, T. L. & Benton, M. J. Ecomorphological diversifications of Mesozoic marine reptiles: the roles of ecological opportunity and extinction. Paleobiology 42, 547–573 (2016).
Romano, C. et al. Permian–Triassic Osteichthyes (bony fishes): diversity dynamics and body size evolution. Biol. Rev. 91, 106–147 (2016).
Heim, N. A., Knope, M. L., Schaal, E. K., Wang, S. C. & Payne, J. L. Cope’s rule in the evolution of marine animals. Science 347, 867–870 (2015).
Heim, N. A. et al. Hierarchical complexity and the size limits of life. Proc. R. Soc. Lond. Ser. B. 284, 20171039 (2017).
Ibáñez, C. M. & Keyl, F. Cannibalism in cephalopods. Rev. Fish. Biol. Fish. 20, 123–136 (2010).
Ó Gogáin, A. et al. Fish and tetrapod communities across a marine to brackish salinity gradient in the Pennsylvanian (early Moscovian) Minto Formation of New Brunswick, Canada, and their palaeoecological and palaeogeographical implications. Palaeontology 59, 689–724 (2016).
Aminikhanghahi, S. & Cook, D. J. A survey of methods for time series change point detection. Knowl. Inf. Syst. 51, 339–367 (2017).
Turchin, P. Complex Population Dynamics: A Theoretical/Empirical Synthesis (MPB-35) (Princeton Univ. Press, 2013).
Ricklefs, R. E. & Miller, G. Ecology (Macmillan, 2000).
Beckett, S. J., Boulton, C. A. & Williams, H. T. FALCON: a software package for analysis of nestedness in bipartite networks. FResearch 3, 185 (2014).
Gotelli, N. J. Research frontiers in null model analysis. Glob. Ecol. Biogeogr. 10, 337–343 (2001).
Newman, M. Networks: An Introduction (Oxford Univ. Press, 2010).
Mariani, M. S., Ren, Z.-M., Bascompte, J. & Tessone, C. J. Nestedness in complex networks: observation, emergence, and implications. Phys. Rep. 813, 1–90 (2019).
Stouffer, D. B. & Bascompte, J. Compartmentalization increases food-web persistence. Proc. Natl Acad. Sci. USA 108, 3648–3652 (2011).
Gross, T., Rudolf, L., Levin, S. A. & Dieckmann, U. Generalized models reveal stabilizing factors in food webs. Science 325, 747–750 (2009).
Newman, M. E. Fast algorithm for detecting community structure in networks. Phys. Rev. E 69, 066133 (2004).
Csardi, G. & Nepusz, T. The igraph software package for complex network research. J. Complex Sys. 1695, 1–9 (2006).
Acknowledgements
This work was supported by grants from the National Key R&D Program of China (grant nos. 2022YFF0802900 and 2023YFF0806200), the National Natural Science Foundation of China (grant nos. 42377205, 41930322 and 92055212), and the US National Science Foundation (grant nos. 1714898, 1629776, 1336986 and 0530825). This is a contribution to the Theory of Hydrocarbon Enrichment under Multi-Spheric Interactions of the Earth (grant no. THEMSIE04010101).
Author information
Authors and Affiliations
Contributions
Y.H. and P.R. developed the protocol. Y.H. and P.R. tested the protocol and provided feedback on improvements. Y.H. wrote an initial draft, which was then revised by all coauthors. P.R. and Z.-Q.C. supervised the software development process, manuscript writing and testing of the protocol and secured funding to support the project.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Protocols thanks Kenneth Angielczyk, William Foster, Alycia Stigall and Carrie Tyler for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Key references
Huang, Y. et al. Curr. Biol. 33, 1059–1070 (2023): https://doi.org/10.1016/j.cub.2023.02.007
Huang, Y. et al. Proc. Roy. Soc. B. Biol. Sci. 288, 20210148 (2021): https://doi.org/10.1098/rspb.2021.0148
Roopnarine, P. et al. J. Vertebr. Paleontol. 37, 254–272 (2018): https://doi.org/10.1080/02724634.2018.1424714
Supplementary information
Supplementary Data 1
Fossil occurrences with their stratigraphic information.
Supplementary Data 2
The guild richness data for all communities.
Supplementary Data 3
Metanetwork matrix.
Supplementary Data 4
The matrix data used to generate the food web diagrams.
Supplementary Data 5
The data used for hypergeometric probability analysis.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Huang, Y., Roopnarine, P.D. & Chen, ZQ. A modeling approach to quantify ecological dynamics and functional structures of paleocommunities. Nat Protoc (2025). https://doi.org/10.1038/s41596-025-01201-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41596-025-01201-4