Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A modeling approach to quantify ecological dynamics and functional structures of paleocommunities

Abstract

Fossils preserve crucial information about the underlying biological and ecological processes of past ecosystems. Models built on paleontological and paleoecological data can help to elucidate the factors influencing ecosystem health, stability, resilience and function, offering a unique perspective on the long-term ecological impacts of the ongoing human-induced biodiversity crisis and ecosystem degradation. Substantial advances have been made in quantifying the ecological dynamics and functional structures of paleocommunities. However, the effective reconstruction of paleo-food webs and the quantitative evaluation of paleocommunity dynamics are still challenging tasks. Here we present a detailed protocol for reconstructing paleo-food webs using fossil data and for modeling the stability and structures of these paleocommunities using the cascading extinction on graphs model. The procedure includes (1) selecting an appropriate geological time range and geographic scope, collecting fossil data and reconstructing paleocommunities; (2) assigning species to guilds on the basis of shared prey–predator relationships and connecting the guilds that interacted trophically; (3) measuring the functional structures and modeling their dynamics using species-level networks and cascading extinction on graphs models; and (4) analyzing the results to understand the community evolution and identify tipping points that predict ecosystem collapse. Organismal expertise is needed in the reconstruction of paleo-food webs. The resulting comparisons of the paleocommunity stability and structure can help calibrate the timing and patterns of ecological changes during critical intervals in Earth history. This Protocol aims to enhance the utilization of ecological modeling in understanding the evolution of ancient ecosystems. The time required for the protocol is community size dependent — for example, ~5 months for communities containing ~1,000 species.

Key points

  • This Protocol provides detailed steps for reconstructing paleo-food webs using fossil data and modeling the stability and structures of these food webs to environmental disturbances using the cascading extinction on graphs model.

  • This approach can be used to identify tipping points of ecosystem collapse and is applicable to both events from the distant past and those from the present.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An overview of the food web modeling pipeline.
Fig. 2: Examples of metanetworks (guild-level food webs).
Fig. 3: Rarefaction analysis of number of species against number of guilds.
Fig. 4: NMDS ordinations of paleocommunities using Jaccard and Bray–Curtis distances.
Fig. 5: Trophic space variations of the PTB1, PTB2 and PTB3 mega-communities.
Fig. 6: Expected and observed losses of taxa of the PTB1, PTB2 and PTB3 paleocommunities.
Fig. 7: NTPs.
Fig. 8: Structural food web properties.
Fig. 9: Variation in nestedness among different communities.
Fig. 10: Variation in modularity among different communities.
Fig. 11: The CEG program data input screen and example plots showing perturbation magnitude versus secondary extinction.
Fig. 12: SELP and collapse threshold variations of 27 communities across the Permian–Triassic boundary in South China.

Similar content being viewed by others

Data availability

All the data52 used in this protocol are available via Open Science Framework (OSF) at: https://osf.io/fqg37/.

Code availability

All the code used in this protocol is available via Open Science Framework (OSF) at: https://proc.io/fqg37/. The code in this protocol has been peer-reviewed.

References

  1. del Monte-Luna, P. et al. A review of recent and future marine extinctions. Camb. Prism. Extinct. 1, e13 (2023).

  2. Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).

    Article  PubMed  Google Scholar 

  3. Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ceballos, G. & Ehrlich, P. R. Mutilation of the tree of life via mass extinction of animal genera. Proc. Natl Acad. Sci. USA 120, e2306987120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ceballos, G., Ehrlich, P. R. & Raven, P. H. Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proc. Natl Acad. Sci. USA 117, 13596–13602 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).

    Article  Google Scholar 

  7. Rybicki, J., Abrego, N. & Ovaskainen, O. Habitat fragmentation and species diversity in competitive communities. Ecol. Lett. 23, 506–517 (2020).

    Article  PubMed  Google Scholar 

  8. Sax, D. F. & Gaines, S. D. Species invasions and extinction: the future of native biodiversity on islands. Proc. Natl Acad. Sci. USA 105, 11490–11497 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: the bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37, 25–50 (2012).

    Article  Google Scholar 

  10. Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Wake, D. B. & Vredenburg, V. T. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl Acad. Sci. USA 105, 11466–11473 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Butchart, S. H. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. De Vos, J. M., Joppa, L. N., Gittleman, J. L., Stephens, P. R. & Pimm, S. L. Estimating the normal background rate of species extinction. Conserv. Biol. 29, 452–462 (2015).

    Article  PubMed  Google Scholar 

  16. Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Lenton, T. M. et al. Climate tipping points—too risky to bet against. Nature 575, 592–595 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Payne, J. L., Bachan, A., Heim, N. A., Hull, P. M. & Knope, M. L. The evolution of complex life and the stabilization of the Earth system. Interface Focus 10, 20190106 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sepkoski, J. J. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology 10, 246–267 (1984).

    Article  Google Scholar 

  21. Hull, P. Life in the aftermath of mass extinctions. Curr. Biol. 25, R941–R952 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Angielczyk, K. D. & Walsh, M. L. Patterns in the evolution of nares size and secondary palate length in anomodont therapsids (Synapsida): implications for hypoxia as a cause of end-Permian tetrapod extinctions. J. Paleontol. 82, 528–542 (2008).

    Article  Google Scholar 

  23. Roopnarine, P. D., Angielczyk, K. D., Wang, S. C. & Hertog, R. Trophic network models explain instability of Early Triassic terrestrial communities. Proc. R. Soc. Lond. Ser. B 274, 2077–2086 (2007).

    Google Scholar 

  24. Chen, Z.-Q. & Benton, M. J. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat. Geosci. 5, 375–383 (2012).

    Article  CAS  Google Scholar 

  25. Zhang, X. & Shu, D. Current understanding on the Cambrian Explosion: questions and answers. PalZ 95, 641–660 (2021).

    Article  Google Scholar 

  26. Miller, A. I. & Foote, M. Calibrating the Ordovician radiation of marine life: implications for Phanerozoic diversity trends. Paleobiology 22, 304–309 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Marshall, C. R. Forty years later: the status of the “Big Five” mass extinctions. Camb. Prism. Extinct. 1, e5 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jablonski, D. Lessons from the past: evolutionary impacts of mass extinctions. Proc. Natl Acad. Sci. USA 98, 5393–5398 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Payne, J. L. & Clapham, M. E. End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Annu. Rev. Earth Planet. Sci. 40, 89–111 (2012).

    Article  CAS  Google Scholar 

  30. Harnik, P. G. et al. Extinctions in ancient and modern seas. Trends Ecol. Evol. 27, 608–617 (2012).

    Article  PubMed  Google Scholar 

  31. Roopnarine, P. D., Banker, R. M. W. & Sampson, S. D. Impact of the extinct megaherbivore Steller’s sea cow (Hydrodamalis gigas) on kelp forest resilience. Front. Ecol. Evol. 10, (2022).

  32. Foote, M. Perspective: evolutionary patterns in the fossil record. Evolution 50, 1–11 (1996).

    Article  PubMed  Google Scholar 

  33. Alroy, J. et al. Phanerozoic trends in the global diversity of marine invertebrates. Science 321, 97–100 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Benton, M. J. Diversification and extinction in the history of life. Science 268, 52–58 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Stanley, S. M. Memoir 4: an analysis of the history of marine animal diversity. Paleobiology 33, 1–55 (2007).

    Google Scholar 

  36. Bambach, R. K., Bush, A. M. & Erwin, D. H. Autecology and the filling of ecospace: key metazoan radiations. Palaeontology 50, 1–22 (2007).

    Article  Google Scholar 

  37. Alvarez, S. A. et al. Diversity decoupled from ecosystem function and resilience during mass extinction recovery. Nature 574, 242–245 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Droser, M. L., Bottjer, D. J., Sheehan, P. M. & McGhee, G. R. Jr Decoupling of taxonomic and ecologic severity of Phanerozoic marine mass extinctions. Geology 28, 675–678 (2000).

    Article  Google Scholar 

  39. Knope, M. L., Heim, N. A., Frishkoff, L. O. & Payne, J. L. Limited role of functional differentiation in early diversification of animals. Nat. Commun. 6, 6455 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Foster, W. J. & Twitchett, R. J. Functional diversity of marine ecosystems after the Late Permian mass extinction event. Nat. Geosci. 7, 233–238 (2014).

    Article  CAS  Google Scholar 

  41. Lawton, J. H. Are there general laws in ecology? Oikos 84, 177 (1999).

    Article  Google Scholar 

  42. Schleuning, M., Fründ, J. & García, D. Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of trait‐based concepts to plant–animal interactions. Ecography 38, 380–392 (2015).

    Article  Google Scholar 

  43. Worden, A. Z. et al. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015).

    Article  PubMed  Google Scholar 

  44. Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory: the role of connectance and size. Proc. Natl Acad. Sci. USA 99, 12917–12922 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Neutel, A.-M., Heesterbeek, J. A. & De Ruiter, P. C. Stability in real food webs: weak links in long loops. Science 296, 1120–1123 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs. Nature 404, 180–183 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Shaw, J. O. et al. Disentangling ecological and taphonomic signals in ancient food webs. Paleobiology 47, 385–401 (2021).

    Article  Google Scholar 

  49. Banker, R. M. W., Dineen, A. A., Sorman, M. G., Tyler, C. L. & Roopnarine, P. D. Beyond functional diversity: The importance of trophic position to understanding functional processes in community evolution. Front. Ecol. Evol. 10, 983374 (2022).

    Article  Google Scholar 

  50. Angielczyk, K. D., Roopnarine, P. D. & Wang, S. C. Modeling the role of primary productivity disruption in end-Permian extinctions, Karoo Basin, South Africa. N. Mex. Mus. Nat. Hist. Sci. Bull. 30, 16–23 (2005).

    Google Scholar 

  51. Mitchell, J. S., Roopnarine, P. D. & Angielczyk, K. D. Late Cretaceous restructuring of terrestrial communities facilitated the end-Cretaceous mass extinction in North America. Proc. Natl Acad. Sci. USA 109, 18857–18861 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang, Y. et al. The stability and collapse of marine ecosystems during the Permian–Triassic mass extinction. Curr. Biol. 33, 1059–1070.e4 (2023).

    Article  CAS  PubMed  Google Scholar 

  53. Stanton, R. J. & Nelson, P. C. Reconstruction of the trophic web in paleontology: community structure in the Stone City Formation (middle Eocene, Texas). J. Paleontol. 54, 118–135 (1980).

    Google Scholar 

  54. Martill, D. M., Taylor, M. A., Duff, K. L., Riding, J. B. & Bown, P. R. The trophic structure of the biota of the Peterborough Member, Oxford Clay Formation (Jurassic), UK. J. Geol. Soc. 151, 173–194 (1994).

    Article  Google Scholar 

  55. Roopnarine, P. D. Extinction cascades and catastrophe in ancient food webs. Paleobiology 32, 1–19 (2006).

    Article  Google Scholar 

  56. Dunne, J. A., Williams, R. J., Martinez, N. D., Wood, R. A. & Erwin, D. H. Compilation and network analyses of Cambrian food webs. PloS Biol. 6, e102 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Dunne, J. A., Labandeira, C. C. & Williams, R. J. Highly resolved early Eocene food webs show development of modern trophic structure after the end-Cretaceous extinction. Proc. R. Soc. Lond. Ser. B 281, 20133280 (2014).

    Google Scholar 

  58. Muscente, A. D. et al. Exceptionally preserved fossil assemblages through geologic time and space. Gondwana Res 48, 164–188 (2017).

    Article  CAS  Google Scholar 

  59. Hewitt, J. E., Ellis, J. I. & Thrush, S. F. Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems. Glob. Change Biol. 22, 2665–2675 (2016).

    Article  Google Scholar 

  60. Roopnarine, P. D. & Dineen, A. A. in Marine Conservation Paleobiology (eds Tyler, C. L. & Schneider, C. L.) 105–141 (Springer, 2018).

  61. Fernando Blanco et al. Punctuated ecological equilibrium in mammal communities over evolutionary time scales. Science 372, 300–303 (2021).

    Article  PubMed  Google Scholar 

  62. Mace, G. M., Norris, K. & Fitter, A. H. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. Evol. 27, 19–26 (2012).

    Article  PubMed  Google Scholar 

  63. Levin, S. A. Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1, 431–436 (1998).

    Article  Google Scholar 

  64. Roopnarine, P. D. & Angielczyk, K. in Evolutionary Theory: A Hierarchical Perspective (eds. Eldredge, N. et al.) 307–333 (Univ. Chicago Press, 2016).

  65. Knoll, A. H. Systems paleobiology. Geol. Soc. Am. Bull. 125, 3–13 (2013).

    Article  CAS  Google Scholar 

  66. May, R. M. Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos. Science 186, 645–647 (1974).

    Article  CAS  PubMed  Google Scholar 

  67. Pimm, S. L. in Population and Community Biology 1–11 (Springer, 1982).

  68. McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Bennington, J. B. et al. Critical issues of scale in paleoecology. Palaios 24, 1–4 (2009).

  71. Valiente-Banuet, A. et al. Beyond species loss: the extinction of ecological interactions in a changing world. Funct. Ecol. 29, 299–307 (2015).

    Article  Google Scholar 

  72. Vermeij, G. J. Ecological avalanches and the two kinds of extinction. Evol. Ecol. Res. 6, 315–337 (2004).

    Google Scholar 

  73. Roopnarine, P. Networks, extinction and paleocommunity food webs. quantitative methods in paleobiology. Paleont. Soc. Pap. 16, 143–161 (2010).

    Article  Google Scholar 

  74. Deb, D. Trophic uncertainty vs parsimony in food web research. Oikos 78, 191–194 (1997).

    Article  Google Scholar 

  75. Bentley, J. W. et al. Diet uncertainty analysis strengthens model-derived indicators of food web structure and function. Ecol. Indic. 98, 239–250 (2019).

    Article  Google Scholar 

  76. Dunne, J. A. in Ecological Networks: Linking Structure to Dynamics in Food Webs (eds Pascual M. & Dunne J.A.) 27–82 (Oxford Univ. Press, 2006)

  77. Humphries, M. M., Studd, E. K., Menzies, A. K. & Boutin, S. To everything there is a season: summer-to-winter food webs and the functional traits of keystone species. Integr. Comp. Biol. 57, 961–976 (2017).

    Article  PubMed  Google Scholar 

  78. Olivier, P. et al. Exploring the temporal variability of a food web using long‐term biomonitoring data. Ecography 42, 2107–2121 (2019).

    Article  Google Scholar 

  79. Eveleigh, E. S. et al. Fluctuations in density of an outbreak species drive diversity cascades in food webs. Proc. Natl Acad. Sci. USA 104, 16976–16981 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Looy, C. V., Brugman, W. A., Dilcher, D. L. & Visscher, H. The delayed resurgence of equatorial forests after the Permian–Triassic ecologic crisis. Proc. Natl Acad. Sci. USA 96, 13857–13862 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Vajda, V. et al. End-Permian (252 Mya) deforestation, wildfires and flooding—an ancient biotic crisis with lessons for the present. Earth Planet. Sci. Lett. 529, 115875 (2020).

    Article  CAS  Google Scholar 

  82. Vajda, V. & Bercovici, A. The global vegetation pattern across the Cretaceous–Paleogene mass extinction interval: a template for other extinction events. Glob. Planet. Change 122, 29–49 (2014).

    Article  Google Scholar 

  83. Lei, Y. et al. Phytoplankton (acritarch) community changes during the Permian–Triassic transition in South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 519, 84–94 (2019).

    Article  Google Scholar 

  84. Cui, C. & Cao, C. Increased aridity across the Permian–Triassic transition in the mid-latitude NE Pangea. Geol. J. 56, 6162–6175 (2021).

    Article  Google Scholar 

  85. Roopnarine, P. D. et al. Comparative ecological dynamics of Permian–Triassic communities from the Karoo, Luangwa, and Ruhuhu Basins of Southern Africa. J. Vertebr. Paleontol. 37, 254–272 (2018).

    Article  Google Scholar 

  86. Roopnarine, P. D. & Angielczyk, K. D. Community stability and selective extinction during the Permian–Triassic mass extinction. Science 350, 90–93 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Huang, Y. et al. Ecological dynamics of terrestrial and freshwater ecosystems across three mid-Phanerozoic mass extinctions from northwest China. Proc. R. Soc. B. 288, 20210148 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kempf, H. L., Castro, I. O., Dineen, A. A., Tyler, C. L. & Roopnarine, P. D. Comparisons of Late Ordovician ecosystem dynamics before and after the Richmondian invasion reveal consequences of invasive species in benthic marine paleocommunities. Paleobiology 46, 320–336 (2020).

    Article  Google Scholar 

  89. Barnosky, A. D. Megafauna biomass tradeoff as a driver of Quaternary and future extinctions. Proc. Natl Acad. Sci. USA 105, 11543–11548 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Plotnick, R. E., Smith, F. A. & Lyons, S. K. The fossil record of the sixth extinction. Ecol. Lett. 19, 546–553 (2016).

    Article  PubMed  Google Scholar 

  92. Galetti, M. et al. Ecological and evolutionary legacy of megafauna extinctions. Biol. Rev. 93, 845–862 (2018).

    Article  PubMed  Google Scholar 

  93. Calosi, P., Putnam, H. M., Twitchett, R. J. & Vermandele, F. Marine metazoan modern mass extinction: improving predictions by integrating fossil, modern, and physiological data. Annu. Rev. Mar. Sci. 11, 369–390 (2019).

    Article  Google Scholar 

  94. Fricke, E. C. et al. Collapse of terrestrial mammal food webs since the Late Pleistocene. Science 377, 1008–1011 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Malanoski, C. M., Farnsworth, A., Lunt, D. J., Valdes, P. J. & Saupe, E. E. Climate change is an important predictor of extinction risk on macroevolutionary timescales. Science 383, 1130–1134 (2024).

    Article  CAS  PubMed  Google Scholar 

  96. Finnegan, S. et al. Using the fossil record to understand extinction risk and inform marine conservation in a changing world. Annu. Rev. Mar. Sci. 16, 307–333 (2024).

    Article  Google Scholar 

  97. Hertog, R., Roopnarine, P. D., Wang, S. C., Angielczyk, K. D. & Olson, M. in Geological Society of America Abstracts with Programs Vol. 38 (ed. Wells, S. G.) 63 (2006).

  98. Roopnarine, P. D. & Angielczyk, K. D. The evolutionary palaeoecology of species and the tragedy of the commons. Biol. Lett. 8, 147–150 (2012).

    Article  PubMed  Google Scholar 

  99. Zhang, M. Ecospace utilization and ecological stability modelling of the Cambrian Lagerstätten ecosystems. PhD thesis, China Univ. of Geosciences (2022).

  100. DeSantis, L. R. Dental microwear textures: reconstructing diets of fossil mammals. Surf. Topogr. Metrol. 4, 023002 (2016).

    Article  Google Scholar 

  101. Cerling, T. E. & Harris, J. M. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120, 347–363 (1999).

    Article  PubMed  Google Scholar 

  102. Sinclair, A. R., Mduma, S. & Brashares, J. S. Patterns of predation in a diverse predator–prey system. Nature 425, 288–290 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Cohen, J. E., Pimm, S. L., Yodzis, P. & Saldaña, J. Body sizes of animal predators and animal prey in food webs. J. Anim. Ecol. 67–78 (1993).

  104. Brose, U. et al. Consumer–resource body‐size relationships in natural food webs. Ecology 87, 2411–2417 (2006).

    Article  PubMed  Google Scholar 

  105. Yodzis, P. in Food Webs: Integration of Patterns and Dynamics (eds Polis, G. A. & Winemiller, K. O.) 192–200 (Springer, 1996).

  106. Briand, F. & Cohen, J. E. Community food webs have scale-invariant structure. Nature 307, 264–267 (1984).

    Article  Google Scholar 

  107. Rasnitsyn, A. P. & Quicke, D. L. J. History of Insects (Springer, 2002).

  108. Grimaldi, D. & Engel, M. S. Evolution of the Insects (Cambridge Univ. Press, 2005).

  109. Li, C., Rieppel, O., Long, C. & Fraser, N. C. The earliest herbivorous marine reptile and its remarkable jaw apparatus. Sci. Adv. 2, e1501659 (2016).

    Article  Google Scholar 

  110. Roopnarine, P. D. Ecological modeling of paleocommunity food webs. Paleont. Soc. Pap. 15, 195–220 (2009).

    Google Scholar 

  111. Dodson, P. Functional and ecological significance of relative growth in Alligator. J. Zool. 175, 315–355 (1975).

    Article  Google Scholar 

  112. Erickson, G. M., Lappin, A. K. & Vliet, K. A. The ontogeny of bite-force performance in American alligator (Alligator mississippiensis). J. Zool. 260, 317–327 (2003).

    Article  Google Scholar 

  113. Gignac, P. & Erickson, G. Ontogenetic changes in dental form and tooth pressures facilitate developmental niche shifts in American alligators. J. Zool. 295, 132–142 (2015).

    Article  Google Scholar 

  114. Dunhill, A. M. et al. Extinction cascades, community collapse, and recovery across a Mesozoic hyperthermal event. Nat. Commun. 15, 8599 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dunne, J. A. et al. The roles and impacts of human hunter-gatherers in North Pacific marine food webs. Sci. Rep. 6, 1–9 (2016).

    Article  Google Scholar 

  116. García-Girón, J. et al. Shifts in food webs and niche stability shaped survivorship and extinction at the end-Cretaceous. Sci. Adv. 8, eadd5040 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Olóriz, F., Reolid, M. & Rodríguez-Tovar, F. J. Approaching trophic structure in Late Jurassic neritic shelves: a western Tethys example from southern Iberia. Earth-Sci. Rev. 79, 101–139 (2006).

    Article  Google Scholar 

  118. Benton, M. J. et al. Exceptional vertebrate biotas from the Triassic of China, and the expansion of marine ecosystems after the Permo–Triassic mass extinction. Earth-Sci. Rev. 125, 199–243 (2013).

    Article  Google Scholar 

  119. Sennikov, A. Evolution of the Permian and Triassic tetrapod communities of Eastern Europe. Palaeogeogr. Palaeoclimatol. Palaeoecol. 120, 331–351 (1996).

    Article  Google Scholar 

  120. Zhang, Y., Zhan, R., Fan, J., Cheng, J. & Liu, X. Principal aspects of the Ordovician biotic radiation. Sci. China Earth Sci. 53, 382–394 (2010).

    Article  Google Scholar 

  121. Kidwell, S. M. Time-averaging and fidelity of modern death assemblages: building a taphonomic foundation for conservation palaeobiology. Palaeontology 56, 487–522 (2013).

    Article  Google Scholar 

  122. Kidwell, S. M. Time-averaged molluscan death assemblages: palimpsests of richness, snapshots of abundance. Geology 30, 803–806 (2002).

    Article  Google Scholar 

  123. Kidwell, S. M. Preservation of species abundance in marine death assemblages. Science 294, 1091–1094 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Scheyer, T. M., Romano, C., Jenks, J. & Bucher, H. Early triassic marine biotic recovery: the predators’ perspective. PLoS ONE 9, e88987 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Stubbs, T. L. & Benton, M. J. Ecomorphological diversifications of Mesozoic marine reptiles: the roles of ecological opportunity and extinction. Paleobiology 42, 547–573 (2016).

    Article  Google Scholar 

  126. Romano, C. et al. Permian–Triassic Osteichthyes (bony fishes): diversity dynamics and body size evolution. Biol. Rev. 91, 106–147 (2016).

    Article  PubMed  Google Scholar 

  127. Heim, N. A., Knope, M. L., Schaal, E. K., Wang, S. C. & Payne, J. L. Cope’s rule in the evolution of marine animals. Science 347, 867–870 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Heim, N. A. et al. Hierarchical complexity and the size limits of life. Proc. R. Soc. Lond. Ser. B. 284, 20171039 (2017).

    Google Scholar 

  129. Ibáñez, C. M. & Keyl, F. Cannibalism in cephalopods. Rev. Fish. Biol. Fish. 20, 123–136 (2010).

    Article  Google Scholar 

  130. Ó Gogáin, A. et al. Fish and tetrapod communities across a marine to brackish salinity gradient in the Pennsylvanian (early Moscovian) Minto Formation of New Brunswick, Canada, and their palaeoecological and palaeogeographical implications. Palaeontology 59, 689–724 (2016).

    Article  Google Scholar 

  131. Aminikhanghahi, S. & Cook, D. J. A survey of methods for time series change point detection. Knowl. Inf. Syst. 51, 339–367 (2017).

    Article  PubMed  Google Scholar 

  132. Turchin, P. Complex Population Dynamics: A Theoretical/Empirical Synthesis (MPB-35) (Princeton Univ. Press, 2013).

  133. Ricklefs, R. E. & Miller, G. Ecology (Macmillan, 2000).

  134. Beckett, S. J., Boulton, C. A. & Williams, H. T. FALCON: a software package for analysis of nestedness in bipartite networks. FResearch 3, 185 (2014).

    Google Scholar 

  135. Gotelli, N. J. Research frontiers in null model analysis. Glob. Ecol. Biogeogr. 10, 337–343 (2001).

    Article  Google Scholar 

  136. Newman, M. Networks: An Introduction (Oxford Univ. Press, 2010).

  137. Mariani, M. S., Ren, Z.-M., Bascompte, J. & Tessone, C. J. Nestedness in complex networks: observation, emergence, and implications. Phys. Rep. 813, 1–90 (2019).

    Article  Google Scholar 

  138. Stouffer, D. B. & Bascompte, J. Compartmentalization increases food-web persistence. Proc. Natl Acad. Sci. USA 108, 3648–3652 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gross, T., Rudolf, L., Levin, S. A. & Dieckmann, U. Generalized models reveal stabilizing factors in food webs. Science 325, 747–750 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Newman, M. E. Fast algorithm for detecting community structure in networks. Phys. Rev. E 69, 066133 (2004).

    Article  CAS  Google Scholar 

  141. Csardi, G. & Nepusz, T. The igraph software package for complex network research. J. Complex Sys. 1695, 1–9 (2006).

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Key R&D Program of China (grant nos. 2022YFF0802900 and 2023YFF0806200), the National Natural Science Foundation of China (grant nos. 42377205, 41930322 and 92055212), and the US National Science Foundation (grant nos. 1714898, 1629776, 1336986 and 0530825). This is a contribution to the Theory of Hydrocarbon Enrichment under Multi-Spheric Interactions of the Earth (grant no. THEMSIE04010101).

Author information

Authors and Affiliations

Authors

Contributions

Y.H. and P.R. developed the protocol. Y.H. and P.R. tested the protocol and provided feedback on improvements. Y.H. wrote an initial draft, which was then revised by all coauthors. P.R. and Z.-Q.C. supervised the software development process, manuscript writing and testing of the protocol and secured funding to support the project.

Corresponding author

Correspondence to Yuangeng Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Kenneth Angielczyk, William Foster, Alycia Stigall and Carrie Tyler for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Huang, Y. et al. Curr. Biol. 33, 1059–1070 (2023): https://doi.org/10.1016/j.cub.2023.02.007

Huang, Y. et al. Proc. Roy. Soc. B. Biol. Sci. 288, 20210148 (2021): https://doi.org/10.1098/rspb.2021.0148

Roopnarine, P. et al. J. Vertebr. Paleontol. 37, 254–272 (2018): https://doi.org/10.1080/02724634.2018.1424714

Supplementary information

Supplementary Data 1

Fossil occurrences with their stratigraphic information.

Supplementary Data 2

The guild richness data for all communities.

Supplementary Data 3

Metanetwork matrix.

Supplementary Data 4

The matrix data used to generate the food web diagrams.

Supplementary Data 5

The data used for hypergeometric probability analysis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Roopnarine, P.D. & Chen, ZQ. A modeling approach to quantify ecological dynamics and functional structures of paleocommunities. Nat Protoc (2025). https://doi.org/10.1038/s41596-025-01201-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-025-01201-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing