Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Biomass-derived carbon dots for the initiation of conventional radical and ATRP-based photopolymerization processes

Abstract

In recent years, there has been increasing interest in using carbon nanodots (CDs) as a component photoinitiator to initiate photopolymerization. These systems support conventional radical photopolymerization and light-mediated atom transfer radical polymerization (photo-ATRP), emphasizing single-component (Type I initiators) and multicomponent systems, which involve at least two reaction partners, specifically, the Type II CD initiator. The latter can function in both photoinduced conventional radical polymerization and photo-ATRP. CDs provide an important advantage by reducing toxicological concerns, as they are nontoxic to cells, and minimizing migration issues typically associated with molecular systems. Here we present two novel photopolymerization methods utilizing biomass-derived CDs as light-sensitive components. The first approach uses biobased furfural to create a Type I CD initiator for photoinduced uncontrolled radical polymerization, which initiates polymerization via homolytic bond cleavage of oxime ester groups attached to the CD surface. The second method employs sodium alginate to generate CDs capable of initiating photoinduced radical polymerization or activating alkyl halides in photo-ATRP processes. Key topics covered in these methods include (1) preparation and characterization of biomass-derived CDs; (2) experimental procedures for CD-assisted photo-induced conventional radical polymerization and photo-ATRP and (3) analysis of the resulting polymers. Preparing and characterizing the CDs takes ~4 d, while photochemical reactions can be conducted within 1 h, depending on requirements. Product separation and analysis take an additional 0.5 h. This protocol is designed for users with experience in polymer chemistry and CD handling.

Key points

  • This Protocol introduces biomass-derived carbon nanodots (CDs) as emerging photoinitiating materials in conventional radical polymerization (Type I and Type II systems) and as photocatalysts for atom transfer radical polymerization-based photopolymerization. The Protocol includes their preparation and characterization, experimental procedures for CD-assisted polymerization and analysis of the resulting polymers focusing on real-time Fourier-transform infrared, photo-differential scanning calorimetry, dynamic mechanical analysis and gel permeation chromatography.

  • Compared with conventional photoinitiators, CDs exhibit notably fewer toxicological responses within the chosen conditions, depending on concentration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: General scheme for light-mediated initiation of conventional radical polymerization based on CDs.
Fig. 2: General scheme for the synthesis of Type I CD-PI.
Fig. 3: Mechanism of Type I CDs cleavage.
Fig. 4: Preparation of Type II CDs.
Fig. 5: Mechanism of light-mediated photo-ATRP based on a photocatalytic cycle (modified from ref. 44).
Fig. 6: Preparation of Type I CD initiator.
Fig. 7: Preparation of photopolymerized films comprising Type I CD initiators.
Fig. 8: Preparation of Type II CD initiator and its use to make crosslinked films by photoinitiation following a Type II photoinitiation.
Fig. 9: Analysis of the CDs comprising aldehyde groups on their surface (CDs-CHO).
Fig. 10: Analysis of photopolymerized material and kinetics.
Fig. 11: Characterization of CDs used for ATRP and Type II photoinitiation.
Fig. 12: Photo-DSC of Type II CD-PI.
Fig. 13: GPC of PMMA.

Similar content being viewed by others

Data availability

Supporting data for this study can be found in our previous publications42,54 or from the respective corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Luo, X. et al. Light-mediated polymerization catalyzed by carbon nanomaterials. Angew. Chem. Int. Ed. Engl. 63, e202316431 (2024).

    Article  CAS  PubMed  Google Scholar 

  2. Sobieski, J. et al. Better together: photoredox/copper dual catalysis in atom transfer radical polymerization. Angew. Chem. Int. Ed. Engl. 64, e202415785 (2025).

    Article  CAS  PubMed  Google Scholar 

  3. Gauci, S. C. et al. Photochemically activated 3D printing inks: current status, challenges, and opportunities. Adv. Mater. 36, 2306468 (2024).

    Article  CAS  Google Scholar 

  4. Sun, K. et al. Visible-light photopolymerization activated by nanocarbon materials as photocatalysts. J. Photochem. Photobiol. C. 57, 100637 (2023).

    Article  CAS  Google Scholar 

  5. He, X. et al. An overview of photopolymerization and its diverse applications. Appl. Res. 2, e202300030 (2023).

    Article  Google Scholar 

  6. Lee, Y. et al. Photocontrolled RAFT polymerization: past, present, and future. Chem. Soc. Rev. 52, 3035–3097 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Bobrin, V. A. et al. The emergence of reversible–deactivation radical polymerization in 3D printing. Adv. Mater. Technol. 8, 2201054 (2023).

    Article  CAS  Google Scholar 

  8. Catt, S. O. et al. Macromolecular engineering: from precise macromolecular inks to 3D printed microstructures. Small 19, 2300844 (2023).

    Article  CAS  Google Scholar 

  9. Yang, L. et al. Laser printed microelectronics. Nat. Commun. 14, 1103 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, Z. et al. A photoinduced dual-wavelength approach for 3D printing and self-healing of thermosetting materials. Angew. Chem. Int. Ed. Engl. 61, e202114111 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Wu, C. et al. Rational design of photocatalysts for controlled polymerization: effect of structures on photocatalytic activities. Chem. Rev. 122, 5476–5518 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Spiegel, C. A. et al. 4D printing at the microscale. Adv. Funct. Mater. 30, 1907615 (2020).

    Article  CAS  Google Scholar 

  13. Corrigan, N. et al. Reversible-deactivation radical polymerization (controlled/living radical polymerization): from discovery to materials design and applications. Prog. Polym. Sci. 111, 101311 (2020).

    Article  CAS  Google Scholar 

  14. Corrigan, N. et al. Seeing the light: advancing materials chemistry through photopolymerization. Angew. Chem. Int. Ed. Engl. 58, 5170–5189 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, L. et al. An oxygen paradox: catalytic use of oxygen in radical photopolymerization. Angew. Chem. Int. Ed. Engl. 58, 16811–16814 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Dadashi-Silab, S. et al. Photoinduced electron transfer reactions for macromolecular syntheses. Chem. Rev. 116, 10212–10275 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Hermens, J. G. H. et al. A coating from nature. Sci. Adv. 6, eabe0026 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Krok-Janiszewska, D. et al. Graphene quantum dots—from spectroscopic performance to 3D printing applications and interaction studies with normal and cancer cells. Eur. Polym. J. https://doi.org/10.1016/j.eurpolymj.2024.113052 (2024).

    Article  Google Scholar 

  19. Allonas, X. et al. Controlling photopolymerization reaction in layer-by-layer photopolymerization in 3D printing. Appl. Res. 3, e202400004 (2024).

    Article  CAS  Google Scholar 

  20. Aktas, N. et al. Current applications of three-dimensional (3D) printing in pediatric dentistry: a literature review. J. Clin. Pediatr. Dent. 48, 4–13 (2024).

    Article  PubMed  Google Scholar 

  21. Zhao, Y. et al. 3D printing of unsupported multi-scale and large-span ceramic via near-infrared assisted direct ink writing. Nat. Commun. 14, 2381 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu, X. et al. Surface modification of 3D-printed micro- and macro-structures via in situ nitroxide‐mediated radical photopolymerization. Adv. Funct. Mater. 34, 2312211 (2023).

    Article  Google Scholar 

  23. Shi, X. et al. Designing nanostructured 3D printed materials by controlling macromolecular architecture. Angew. Chem. Int. Ed. Engl. 61, e202206272 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tomal, W. et al. New horizons for carbon dots: quantum nano-photoinitiating catalysts for cationic photopolymerization and three-dimensional (3D) printing under visible light. Polym. Chem. 12, 3661–3676 (2021).

    Article  CAS  Google Scholar 

  25. Zou, X. et al. Photopolymerization of macroscale black 3D objects using near-infrared photochemistry. ACS Appl. Mater. Interfaces 12, 58287–58294 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Zhu, J. et al. 3D printing of multi-scalable structures via high penetration near-infrared photopolymerization. Nat. Commun. 11, 3462 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, X. et al. Study on modified dealkaline lignin as visible light macromolecular photoinitiator for 3D printing. ACS Sustain. Chem. Eng. 8, 10959–10970 (2020).

    CAS  Google Scholar 

  28. Ligon, S. C. et al. Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 117, 10212–10290 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hongbo, L. Current situation and development trend of radiation curing in China. In Proc. The 30th Anniversary Commemorative Conference on Radiation Curing (Radtech, 2023).

  30. Fouassier, J. P. et al. Photoinitiators for Polymer Synthesis (Wiley, 2012).

  31. Müller, S. M. et al. Recent advances in Type I photoinitiators for visible light induced photopolymerization. ChemPhotoChem 6, e202200091 (2022).

    Article  Google Scholar 

  32. Aydogan, C. et al. Photoinduced controlled/living polymerizations. Angew. Chem. Int. Ed. Engl. 61, e202117377 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, Q. et al. Rational selection of cyanines to generate conjugate acid and free radicals for photopolymerization upon exposure at 860 nm. Angew. Chem. Int. Ed. Engl. 60, 26855–26865 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pang, Y. et al. NIR-sensitized cationic and hybrid radical/cationic polymerization and crosslinking. Angew. Chem. Int. Ed. Engl. 60, 1465–1473 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Strehmel, B. et al. Photophysics and photochemistry of NIR absorbers derived from cyanines: key to new technologies based on chemistry 4.0. Beilstein J. Org. Chem. 16, 415–444 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schmitz, C. et al. New high-power LEDs open photochemistry for near-infrared-sensitized radical and cationic photopolymerization. Angew. Chem. Int. Ed. Engl. 58, 4400–4404 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Zeng, B. et al. Cytotoxic and cytocompatible comparison among seven photoinitiators-triggered polymers in different tissue cells. Vitr. Toxicol. 72, 105103 (2021).

    Article  CAS  Google Scholar 

  38. Strehmel, V. et al. Crosslinked polymers based on monomers derived from renewable resources and their application potential. Appl. Res. 2, e202300004 (2023).

    Article  CAS  Google Scholar 

  39. Qin, H. et al. Boosted photocatalytic H2O2 production in pure water with amino-modified N, S-doped carbon dots. Chem. Eng. J. 499, 156239 (2024).

    Article  CAS  Google Scholar 

  40. Qin, H. et al. Efficient photocatalytic H2O2 production by using unstable S–O functional groups as oxygen adsorption and active sites in shuttlecock waste-derived N, S-doped carbon dots. J. Catal. 435, 115579 (2024).

    Article  CAS  Google Scholar 

  41. Wang, P. et al. Confinement of sustainable carbon dots results in long afterglow emitters and photocatalyst for radical photopolymerization. Angew. Chem. Int. Ed. Engl. 63, e202402915 (2024).

    Article  CAS  PubMed  Google Scholar 

  42. Li, R. et al. Type I photoinitiator based on sustainable carbon dots. Angew. Chem. Int. Ed. Engl. 63, e202404454 (2024).

    Article  CAS  PubMed  Google Scholar 

  43. Kütahya, C. et al. Distinct sustainable carbon nanodots enable free radical photopolymerization, photo-ATRP and photo-CuAAC chemistry. Angew. Chem. Int. Ed. Engl. 60, 10996 (2021).

    Article  Google Scholar 

  44. Kütahya, C. et al. NIR light-induced ATRP for synthesis of block copolymers comprising UV-absorbing moieties. Chem. Eur. J. 26, 10444–10451 (2020).

    Article  PubMed  Google Scholar 

  45. Ðorđević, L. et al. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nat. Commun. 17, 112–130 (2022).

    Google Scholar 

  46. Döring, A. et al. Chiral carbon dots: synthesis, optical properties, and emerging applications. Light Sci. Appl. 11, 75–98 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Luo, X. et al. Room-temperature phosphorescent materials derived from natural resources. Nat. Rev. Chem. 7, 800–812 (2023).

    Article  PubMed  Google Scholar 

  48. Choi, H. et al. Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices. Nat. Photon. 7, 732–738 (2013).

    Article  CAS  Google Scholar 

  49. Jana, B. et al. Carbon nanodots for all-in-one photocatalytic hydrogen generation. J. Am. Chem. Soc. 143, 20122–20132 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Rasheed, T. Carbon dots as robust class of sustainable and environment friendlier nano/optical sensors for pesticide recognition from wastewater. Trends Anal. Chem. 160, 116957 (2023).

    Article  CAS  Google Scholar 

  51. Wang, Y. et al. Unique hole-accepting carbon-dots promoting selective carbon dioxide reduction nearly 100% to methanol by pure water. Nat. Commun. 11, 2531 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cailotto, S. et al. Carbon dots as photocatalysts for organic synthesis: metal-free methylene–oxygen-bond photocleavage. Green. Chem. 22, 1145–1149 (2020).

    Article  Google Scholar 

  53. Qiao, L. et al. Ultrafast visible-light-induced ATRP in aqueous media with carbon quantum dots as the catalyst and its application for 3D printing. J. Am. Chem. Soc. https://doi.org/10.1021/jacs.2c02303 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kütahya, C. et al. Carbon dots as a promising green photocatalyst for free radical and ATRP-based radical photopolymerization with blue LEDs. Angew. Chem. Int. Ed. Engl. 59, 3166–3171 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Coskun, H. I. et al. ATRP with ppb concentrations of photocatalysts. J. Am. Chem. Soc. 146, 28994–29005 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Matyjaszewski, K. Current status and outlook for ATRP. Eur. Polym. J. 211, 113001 (2024).

    Article  CAS  Google Scholar 

  57. Chen, M. et al. Light-controlled radical polymerization: mechanisms, methods, and applications. Chem. Rev. 116, 10167–10211 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Jeon, W. et al. Highly efficient dual photoredox/copper catalyzed atom transfer radical polymerization achieved through mechanism-driven photocatalyst design. Nat. Commun. 15, 5160 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fang, W.-W. et al. Conjugated cross-linked phosphine as broadband light or sunlight-driven photocatalyst for large-scale atom transfer radical polymerization. Nat. Commun. 14, 2891 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Khodadadi Yazdi, M. et al. Progress in ATRP-derived materials for biomedical applications. Prog. Mater. Sci. 143, 101248 (2024).

    Article  CAS  Google Scholar 

  61. Tasdelen, M. A. et al. Photoinduced controlled radical polymerization in methanol. Macromol. Chem. Phys. 211, 2271–2275 (2010).

    Article  CAS  Google Scholar 

  62. Jiang, J. et al. Heteroatom-doped carbon dots (CDs) as a class of metal-free photocatalysts for PET-RAFT polymerization under visible light and sunlight. Angew. Chem. Int. Ed. Engl. 57, 12037–12042 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Fernandes, R. M. F. et al. Block copolymers as dispersants for single-walled carbon nanotubes: modes of surface attachment and role of block polydispersity. Langmuir 34, 13672–13679 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. You, J. et al. Block copolymers as highly effective dispersant for high solid content SiO2 with wide pH tolerability in aqueous. Eur. Polym. J. 208, 112893 (2024).

    Article  CAS  Google Scholar 

  65. Feng, M. et al. Phosphorus- and nitrogen-codoped carbon dots (PN-CDs) catalyze Vis-NIR-light-induced photoATRP. Polym. Chem. 15, 3916–3924 (2024).

    Article  CAS  Google Scholar 

  66. Hao, Q. et al. Effect of nitrogen type on carbon dot photocatalysts for visible-light-induced atom transfer radical polymerization. Polym. Chem. 12, 3060–3066 (2021).

    Article  CAS  Google Scholar 

  67. Campalani, C. et al. Carbon dots as green photocatalysts for atom transfer radical polymerization of methacrylates. Catal. Today 418, 114039 (2023).

    Article  CAS  Google Scholar 

  68. Qiao, X. et al. Simple full-spectrum heterogeneous photocatalyst for photo-induced atom transfer radical polymerization (ATRP) under UV/vis/NIR and its application for the preparation of dual mode curing injectable photoluminescence hydrogel. ACS Appl. Mater. Interfaces 14, 21555–21563 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Luo, X. et al. A porphyrin-based organic network comprising sustainable carbon dots for photopolymerization. Angew. Chem. Int. Ed. Engl. 61, e202208180 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liang, Y. et al. Size effect of semiconductor quantum dots as photocatalysts for PET-RAFT polymerization. Polym. Chem. 11, 4961–4967 (2020).

    Article  CAS  Google Scholar 

  71. Esfandiari, N. et al. Effect of carbonization degree of carbon dots on cytotoxicity and photo-induced toxicity to cells. Heliyon https://doi.org/10.1016/j.heliyon.2019.e02940 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Liu, Y.-Y. et al. Photodegradation of carbon dots cause cytotoxicity. Nat. Commun. 12, 812 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gao, Y. et al. Binder effects in photopolymerized acrylate/zeolite composites for 3D printing/ion-exchange applications. Mater. Chem. Phys. 293, 126853 (2023).

    Article  CAS  Google Scholar 

  74. Belqat, M. et al. Customizable and reconfigurable surface properties of printed micro-objects by 3D direct laser writing via nitroxide mediated photopolymerization. Adv. Funct. Mater. 33, 2211971 (2023).

    Article  CAS  Google Scholar 

  75. Bao, Y. Recent trends in advanced photoinitiators for vat photopolymerization 3D printing. Macromol. Rapid Commun. 43, 2200202 (2022).

    Article  CAS  Google Scholar 

  76. Wu, X. et al. On-demand editing of surface properties of microstructures made by 3D direct laser writing via photo-mediated RAFT polymerization. Adv. Funct. Mater. 32, 2109446 (2021).

    Article  Google Scholar 

  77. Liu, S. et al. Near-infrared light/thermal dual-responsive epoxy-based polydiacetylene composite for 3D printing. Adv. Mater. Interfaces 8, 2101481 (2021).

    Article  CAS  Google Scholar 

  78. Liu, S. et al. New multifunctional benzophenone-based photoinitiators with high migration stability and their applications in 3D printing. Mater. Chem. Front. 5, 1982–1994 (2021).

    Article  CAS  Google Scholar 

  79. Zhang, Z. et al. A versatile 3D and 4D printing system through photocontrolled RAFT polymerization. Angew. Chem. Int. Ed. Engl. 58, 17954–17963 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Vazquez-Martel, C. et al. Natural and naturally derived photoinitiating systems for light-based 3D printing. Org. Mater. 4, 281–291 (2022).

    Article  CAS  Google Scholar 

  81. Vazquez-Martel, C. et al. Printing green: microalgae-based materials for 3D printing with light. Adv. Mater. 36, 2402786 (2024).

    Article  CAS  Google Scholar 

  82. Liu, R. et al. Extremely deep photopolymerization using upconversion particles as internal lamps. Polym. Chem. 7, 2457–2463 (2016).

    Article  CAS  Google Scholar 

  83. Kim, Y. et al. Photoinitiated polymerization of hydrogels by graphene quantum dots. Nanomaterials 11, 2169 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pang, Y. et al. The NIR-sensitized cationic photopolymerization of oxetanes in combination with epoxide and acrylate monomers. Polym. Chem. 12, 5752–5759 (2021).

    Article  CAS  Google Scholar 

  85. Wang, Q. et al. NIR-sensitized hybrid radical and cationic photopolymerization of several cyanines in combination with diaryliodonium bis(trifluoromethyl)sulfonyl imide. Polym. Chem. 14, 116–125 (2023).

    Article  CAS  Google Scholar 

  86. Strehmel, B. et al. Photochemistry with cyanines in the near infrared: a step to Chemistry 4.0 technologies. Chem. Eur. J. 25, 12855–12864 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Lee, K. et al. 3D printing nanostructured solid polymer electrolytes with high modulus and conductivity. Adv. Mater. 34, 2204816 (2022).

    Article  CAS  Google Scholar 

  88. Li, J. et al. 3D printing of functional microrobots. Chem. Soc. Rev. 50, 2794–2838 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Nielsen, A. V. et al. 3D printed microfluidics. Annu. Rev. Anal. Chem. 13, 45–65 (2020).

    Article  Google Scholar 

  90. Ali, M. A. et al. Recent advances in 3D printing of biomedical sensing devices. Adv. Funct. Mater. 32, 2107671 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Kim, S. H. et al. 3D bioprinted silk fibroin hydrogels for tissue engineering. Nat. Protoc. 16, 5484–5532 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Economidou, S. N. et al. A novel 3D printed hollow microneedle microelectromechanical system for controlled, personalized transdermal drug delivery. Addit. Manuf. 38, 101815 (2021).

    CAS  Google Scholar 

  93. Myint, T. T. et al. A separation-free and pizza-structure PAM/GCN/PAA composite hydrogel (PCH) in wastewater treatment at visible light or solar light. Sci. Total Environ. 705, 135821 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Amagat, J. et al. Self-snapping hydrogel-based electroactive microchannels as nerve guidance conduits. Mater. Today Bio 16, 100437 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mischke, P. et al. Filmbildung (Vincentz Network, 2018).

  96. Contreras, C. B. et al. Polystyrene brushes/TiO2 nanoparticles prepared via SI-ATRP on polypropylene and its superhydrophobicity. J. Polym. Res. 28, 103 (2021).

    Article  CAS  Google Scholar 

  97. Fukazawa, K. et al. Photoreactive initiator for surface-initiated ATRP on versatile polymeric substrates. ACS Appl. Mater. Interfaces 8, 24994–24998 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Lu, G. et al. Corrosion protection of iron surface modified by poly(methyl methacrylate) using surface-initiated atom transfer radical polymerization (SI-ATRP). Colloid Polym. Sci. 288, 1445–1455 (2010).

    Article  CAS  Google Scholar 

  99. Barthelemy, B. et al. Synergistic effect on corrosion resistance of phynox substrates grafted with surface-initiated ATRP (co)polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) and 2-hydroxyethyl methacrylate (HEMA). ACS Appl. Mater. Interfaces 6, 10060–10071 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Liu, Y. et al. Achieving less than 100 ppb total metal ion concentration in ESCAP resins synthesized by atom transfer radical polymerization. Macromol. Mater. Eng. 309, 2300418 (2024).

    Article  CAS  Google Scholar 

  101. Eken, G. A. et al. Synthesis of N-substituted maleimides and poly(styrene-co-N-maleimide) copolymers and their potential application as photoresists. Macromol. Chem. Phys. 224, 2200256 (2023).

    Article  CAS  Google Scholar 

  102. Wieberger, F. et al. Tailored star-shaped statistical teroligomers via ATRP for lithographic applications. J. Mater. Chem. 22, 73–79 (2012).

    Article  CAS  Google Scholar 

  103. Chochos, C. L. et al. Hyperbranched polymers for photolithographic applications – towards understanding the relationship between chemical structure of polymer resin and lithographic performances. Adv. Mater. 21, 1121–1125 (2009).

    Article  CAS  Google Scholar 

  104. Wang, J. et al. Continuous flow photo-RAFT and light-PISA. Chem. Eng. J. 420, 127663 (2021).

    Article  CAS  Google Scholar 

  105. Lorandi, F. et al. Atom transfer radical polymerization: a mechanistic perspective. J. Am. Chem. Soc. 144, 15413–15430 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Szczepaniak, G. et al. Making ATRP more practical: oxygen tolerance. Acc. Chem. Res. 54, 1779–1790 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Brömme, T. et al. New iodonium salts in NIR sensitized radical photopolymerization of multifunctional monomers. RSC Adv. 5, 69915–69924 (2015).

    Article  Google Scholar 

  108. Anseth, K. S. et al. Kinetic evidence of reaction difussion during the polymerizationof multi(meth)acrylate monomers. Macromolecules 27, 650–655 (1994).

    Article  CAS  Google Scholar 

  109. Mencel, J. D. et al. Thermal Analysis of Polymers. Fundamentals and Applications (Wiley, 2009).

Download references

Acknowledgements

Z.C., X.L. and S.L. acknowledge financial support by the National Key Research and Development Project (grant no. 2024YFD2201503), the National Natural Science Foundation of China (grant no. 32301534), the China Postdoctoral Science Foundation (grant no. 2024M750379) and the Fundamental Research Funds for the Central Universities (grant nos. 2572022CG02, 2572023CT06 and 2572023CT11-04). Furthermore, K.M. gratefully thanks the National Science Foundation of the USA for funding (grant no. NSF CHE 2401112). Moreover, B.S. acknowledges the county of North Rhine Westfalia for financial support of the project REFUBELAS (grant no. 005-1703-0006). In addition, B.S. and V.S. acknowledge the Federal Ministry for Economic Affairs and Climate Action for financial support (B.S.: grant nos. ZF4288703WZ7, KK5297505PA4 and KK5297501TA1 and V.S.: grant nos. KK5297504JN3 and KK5297502BU1).

Author information

Authors and Affiliations

Authors

Contributions

X. Luo and X. Liu contributed equally to the work regarding writing. H.G. and R.L. performed experiments, investigations, writing of the original draft and data curation. M.W. performed experiments, investigations, writing of original draft and data curation. X.L. performed experiments and investigations. S. Li contributed to writing—review and editing, supervision and acquisition of funding. S. Liu contributed to writing—review and editing. J.L. contributed to writing—review and editing. V.S. contributed to writing—review and editing and funding acquisition. Q.W. performed experiments, investigations, data curation, and writing the original draft and final drafting. G.Y. contributed to writing—review and editing, funding acquisition and conceptualization. K.M. contributed to writing—review and editing, funding acquisition and conceptualization. B.S. contributed to writing—review and editing, funding acquisition, supervision and conceptualization. Z.C. contributed to writing—review and editing, funding acquisition, supervision and conceptualization. All authors contributed extensively to the work presented.

Corresponding authors

Correspondence to Gorkem Yilmaz, Krzysztof Matyjaszewski, Bernd Strehmel or Zhijun Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Min Sang Kwon and Weilong Shi for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Kütahya, C. et al. Angew. Chem. Int. Ed. 59, 3166–3171 (2020): https://doi.org/10.1002/anie.201912343

Li, R. et al. Angew. Chem. Int. Ed. 63, e202404454 (2024): https://doi.org/10.1002/anie.202404454

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Liu, X., Guo, H. et al. Biomass-derived carbon dots for the initiation of conventional radical and ATRP-based photopolymerization processes. Nat Protoc (2025). https://doi.org/10.1038/s41596-025-01210-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-025-01210-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing