Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Modular assembly of polyoxometalate clusters at the sub-1 nm scale

Abstract

Atomic-level manufacturing enables the bottom-up fabrication of nanomaterials with tailored structures and properties. Clusters with atomic precise structures can be used as superatom building blocks to construct superstructures with exceptional properties beyond their individual properties. However, the programmable and large-scale synthesis of cluster assemblies remains challenging. This protocol describes the detailed experimental procedures for the modular assembly of polyoxometalate (POM) clusters into subnanomaterials by programmable interactions under simple and mild conditions. In this approach different types of POM clusters (0.7–1.8 nm in size) are coated with quaternary ammonium or oleylamine ligands using either two-phase or solvothermal methods. The assembly process depends on the interactions between atom clusters, ligands and the reaction matrix, all of which can be modified to generate a library of subnanometer superstructures. The four intercluster connection modes are metal cation-induced coordinative connection, anion bridged covalent connection, synergistic noncovalent interaction and cluster–nucleus co-assembly. A library that includes single-cluster nanowires, clusterphenes and nanosheets with single-cluster thicknesses, can be prepared within 3–12 h. Owing to their ultrahigh surface atom ratio and electron delocalization, the resulting subnanometer POM assemblies with rich structural and compositional diversity exhibit excellent properties and application potential in terms of mechanics, catalysis and chirality. This procedure is suitable for users with prior expertise in the synthesis of inorganic and cluster-based nanomaterials.

Key points

  • This protocol describes a general synthetic strategy for the modular assembly of polyoxometalate (POM) clusters to construct subnanomaterials.

  • This strategy provides rich structural and compositional diversity for the design of POM-based nanomaterials with programmable connection modes and advanced properties not seen in free POMs or crystals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Modular assembly of POM clusters by programmable interactions.
Fig. 2: Schematic diagrams of the experimental device used for the synthesis of POM-based nanomaterials.
Fig. 3: Structure and characterization of PCAMs with metal cation induced coordinative connections.
Fig. 4: Tetragonal phase structure and characterization of 2D CN–PTA sheets with anion bridged covalent connection.
Fig. 5: Morphology and characterization of the nanotube and nanosheet with synergistic noncovalent interaction.
Fig. 6: PCAMs with cluster–nucleus co-assembly.
Fig. 7: Detailed characterization, simulations and geometry optimization of PCAMs.
Fig. 8: Gelation and adhesion properties of SNW-based organogels and SNWs.
Fig. 9: Catalysis for energy conversion of PCAMs.
Fig. 10: CPL photodetection and CISS characterization of chiral assemblies.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are included in the article and the references listed in the Supplementary Information. Source data are provided with this paper.

References

  1. Feynman, R. P. There’s plenty of room at the bottom. J. Microelectromech. Syst. 1, 60–66 (1992).

    Article  Google Scholar 

  2. Lehn, J. M. Perspectives in supramolecular chemistry—from molecular recognition towards molecular information processing and self-organization. Angew. Chem. Int. Ed. 29, 1304–1319 (1990).

    Article  Google Scholar 

  3. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunneling microscope. Nature 344, 524–526 (1990).

    Article  CAS  Google Scholar 

  5. Brune, H., Giovannini, M., Bromann, K. & Kern, K. Self-organized growth of nanostructure arrays on strained metallic substrates. Nature 394, 451–453 (1998).

    Article  CAS  Google Scholar 

  6. Jena, P. & Sun, Q. Super atomic clusters: design rules and potential for building blocks of materials. Chem. Rev. 118, 5755–5870 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Doud, E. A. et al. Superatoms in materials science. Nat. Rev. Mater. 5, 371–387 (2020).

    Article  Google Scholar 

  8. Khanna, S. N. & Jena, P. Atomic clusters: building blocks for a class of solids. Phys. Rev. B 51, 13705–13716 (1995).

    Article  CAS  Google Scholar 

  9. Long, D. L., Burkholder, E. & Cronin, L. Polyoxometalate clusters, nanostructures and materials: from self assembly to designer materials and devices. Chem. Soc. Rev. 36, 105–121 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Li, X. et al. A polymeric co-assembly of subunit vaccine with polyoxometalates induces enhanced immune responses. Nano Res. 15, 4175–4180 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Lian, L., Zhang, H., An, S., Chen, W. & Song, Y. F. Polyoxometalates-based heterogeneous catalysts in acid catalysis. Sci. China Chem. 64, 1117–1130 (2021).

    Article  CAS  Google Scholar 

  12. Putaj, P. & Lefebvre, F. Polyoxometalates containing late transition and noble metal atoms. Chem. Rev. 255, 1642–1685 (2011).

    CAS  Google Scholar 

  13. Anyushin, A. V., Kondinski, A. & Parac-Vogt, T. N. Hybrid polyoxometalates as post-functionalization platforms: from fundamentals to emerging applications. Chem. Soc. Rev. 49, 382–432 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, S. S. & Yang, G. Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 115, 4893–4962 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Ji, Y., Huang, L., Hu, J., Streb, C. & Song, Y. F. Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage and sensor systems. Energy Environ. Sci. 8, 776–789 (2015).

    Article  CAS  Google Scholar 

  16. Busche, C. et al. Design and fabrication of memory devices based on nanoscale polyoxometalate clusters. Nature 515, 545–549 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Rhule, J. T., Hill, C. L., Judd, D. A. & Schinazi, R. F. Polyoxometalates in medicine. Chem. Rev. 98, 327–358 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Miras, H. N., Yan, J., Long, D. L. & Cronin, L. Engineering polyoxometalates with emergent properties. Chem. Soc. Rev. 41, 7403–7430 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Miras, H. N., Vilà-Nadal, L. & Cronin, L. Polyoxometalate based open-frameworks (POM-OFs). Chem. Soc. Rev. 43, 5679–5699 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, F., Li, H., Li, Z., Liu, Q. & Wang, X. Phase engineering of polyoxometalate assembled superstructures. Nat. Synth. 3, 1039–1048 (2024).

    Article  CAS  Google Scholar 

  21. Zhang, S., Shi, W. & Wang, X. Locking volatile organic molecules by subnanometer inorganic nanowire-based organogels. Science 377, 100–104 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, F., Li, Z. & Wang, X. Mechanically tunable organogels from highly charged polyoxometalate clusters loaded with fluorescent dyes. Nat. Commun. 14, 8327 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liu, Q. et al. Self-assembly of polyoxometalate clusters into two-dimensional clusterphene structures featuring hexagonal pores. Nat. Chem. 14, 433–440 (2022).

    Article  PubMed  Google Scholar 

  24. Li, Z., Zhang, Z., Hu, H., Liu, Q. & Wang, X. Synthesis of two-dimensional polyoxoniobate-based clusterphenes with in-plane electron delocalization. Nat. Synth. 2, 989–997 (2023).

    Article  CAS  Google Scholar 

  25. Li, H. et al. A monolayer crystalline covalent network of polyoxometalate clusters. Sci. Adv. 9, eadi6595 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, T., Diemann, E., Li, H., Dress, A. W. M. & Mu¨ller, A. Self-assembly in aqueous solution of wheel-shaped Mo154 oxide clusters into vesicles. Nature 426, 59–62 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Kistler, M. L., Bhatt, A., Liu, G., Casa, D. & Liu, T. A complete Macroion “Blackberry” assembly-Macroion transition with continuously adjustable assembly sizes in {Mo132} water/acetone systems. J. Am. Chem. Soc. 129, 6453–6460 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Liu, T. B. Supramolecular structures of polyoxomolybdate-based giant molecules in aqueous solution. J. Am. Chem. Soc. 124, 10942–10943 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Liu, G., Liu, T., Mal, S. S. & Kortz, U. Wheel-shaped polyoxotungstate [Cu20Cl(OH)24(H2O)12(P8W48O184)]25 macroanions form supramolecular “blackberry” structure in aqueous solution. J. Am. Chem. Soc. 128, 10103–10110 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Botar, B., Kogerler, P. & Hill, C. L. [{(Mo)Mo5O21(H2O)3(SO4)}12(VO)30(H2O)20]36−: a molecular quantum spin icosidodecahedron. Chem. Commun. 25, 3138–3140 (2005).

    Article  Google Scholar 

  31. Zhang, J., Song, Y.-F., Cronin, L. & Liu, T. Self-assembly of organic inorganic hybrid amphiphilic surfactants with large polyoxometalates as polar head groups. J. Am. Chem. Soc. 130, 14408–14409 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Pradeep, C. P. et al. Synthesis of modular “inorganic organic–inorganic” polyoxometalates and their assembly into vesicles. Angew. Chem. Int. Ed. 48, 8309–8313 (2009).

    Article  CAS  Google Scholar 

  33. Yin, P. et al. A double-tailed fluorescent surfactant with a hexavanadate cluster as the head group. Angew. Chem. Int. Ed. 50, 2521–2525 (2011).

    Article  CAS  Google Scholar 

  34. Li, D. et al. Inorganic–organic hybrid vesicles with counterion- and pH controlled fluorescent properties. J. Am. Chem. Soc. 133, 14010–14016 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Soria-Carrera, H., Atrián-Blasco, E., Martín-Rapún, R. & Mitchell, S. G. Polyoxometalate–peptide hybrid materials: from structure–property relationships to applications. Chem. Sci. 14, 10–28 (2023).

    Article  CAS  Google Scholar 

  36. Parac-Vogt, T. N. et al. Host–guest assemblies of polyoxovanadate clusters as supramolecular catalysts. Angew. Chem. Int. Ed. e202420773 (2024).

  37. Zhang, G. et al. Supramolecular framework membrane for precise sieving of small molecules, nanoparticles and proteins. Nat. Commun. 14, 975 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Han, J. W. & Hill, C. L. A coordination network that catalyzes O2-based oxidations. J. Am. Chem. Soc. 129, 15094–15095 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Li, X. X. et al. Designed assembly of heterometallic cluster organic frameworks based on Anderson-type polyoxometalate clusters. Angew. Chem. Int. Ed. 55, 6462–6466 (2016).

    Article  CAS  Google Scholar 

  40. Bu, W., Uchida, S. & Mizuno, N. Micelles and vesicles formed by polyoxometalate-block copolymer composites. Angew. Chem. Int. Ed. 48, 8281–8284 (2009).

    Article  CAS  Google Scholar 

  41. Bao, Y.-Y., Bi, L.-H., Wu, L.-X., Mal, S. S. & Kortz, U. Preparation and characterization of Langmuir–Blodgett films of wheel-shaped Cu-20 tungstophosphate and DODA by two different strategies. Langmuir 25, 13000–13006 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Li, H., Sun, H., Qi, W., Xu, M. & Wu, L. Onionlike hybrid assemblies based on surfactant-encapsulated polyoxometalates. Angew. Chem. Int. Ed. 46, 1300–1303 (2007).

    Article  CAS  Google Scholar 

  43. Wang, H. Y., Ren, L. J., Wang, X. G., Ming, J. B. & Wang, W. Insights into the self assembly of a heterocluster Janus molecule into colloidal onions. Langmuir 35, 6727–6734 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Yang, P. et al. Polyoxometalate–cyclodextrin metal–organic frameworks: from tunable structure to customized storage functionality. J. Am. Chem. Soc. 141, 1847–1851 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Noguchi, T., Chikara, C., Kuroiwa, K., Kaneko, K. & Kimizuka, N. Controlled morphology and photoreduction characteristics of polyoxometalate (POM)/lipid complexes and the effect of hydrogen bonding at molecular interfaces. Chem. Commun. 47, 6455–6457 (2011).

    Article  CAS  Google Scholar 

  46. Khlifi, S. et al. Chaotropic effect as an assembly motif to construct supramolecular cyclodextrin–polyoxometalate-based frameworks. J. Am. Chem. Soc. 144, 4469–4477 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Liu, Q. et al. Visible light induced Ag–polyoxometalate coassembly into single-cluster nanowires. Adv. Mater. 34, 2206178 (2022).

    Article  CAS  Google Scholar 

  48. Liu, Q. et al. Single molecule-mediated assembly of polyoxometalate single-cluster rings and their three-dimensional superstructures. Sci. Adv. 5, eaax1081 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, Q. et al. Tuning the chirality evolution in achiral subnanometer systems by judicious control of molecule interactions. J. Am. Chem. Soc. 146, 12819–12827 (2024).

    Article  CAS  PubMed  Google Scholar 

  50. Li, Z. et al. Single-walled cluster nanotubes for single-atom catalysts with precise structures. J. Am. Chem. Soc. 146, 450–459 (2024).

    Article  CAS  PubMed  Google Scholar 

  51. Liu, J. et al. Incorporation of clusters within inorganic materials through their addition during nucleation steps. Nat. Chem. 11, 839–845 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Liu, J. et al. Au-polyoxometalates A-B-A-B type copolymer-analogue sub-1 nm nanowires. Small 17, e2006260 (2021).

    Article  PubMed  Google Scholar 

  53. Liu, J., Shi, W. & Wang, X. ZnO-POM cluster sub-1 nm nanosheets as robust catalysts for the oxidation of thioethers at room temperature. J. Am. Chem. Soc. 143, 16217–16225 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, S., Shi, W., Yu, B. & Wang, X. Versatile inorganic subnanometer nanowire adhesive. J. Am. Chem. Soc. 144, 16389–16394 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Shearer, M. J. et al. Complex and noncentrosymmetric stacking of layered metal dichalcogenide materials created by screw dislocations. J. Am. Chem. Soc. 139, 3496–3504 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC (grant nos. 92461314, 22241502, 22035004, 22250710677, 22305137).

Author information

Authors and Affiliations

Authors

Contributions

Q.L. and X.W. conceived and designed the experiments. F.Z. performed the experiments. Q.L. assisted the experiments. F.Z., Q.L. and X.W. drafted the manuscript and developed the protocol. All of the authors discussed the experiments and co-wrote the manuscript.

Corresponding authors

Correspondence to Qingda Liu or Xun Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Haralampos N. Miras and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Zhang, S. et al. Science 377, 100–104 (2022): https://doi.org/10.1126/science.abm7574

Liu, Q. et al. Nat. Chem. 14, 433–440 (2022): https://doi.org/10.1038/s41557-022-00889-1

Liu, J. et al. Nat. Chem. 11, 839–845 (2019): https://doi.org/10.1038/s41557-019-0303-0

Li, Z. et al. Nat. Synth. 2, 989–997 (2023): https://doi.org/10.1038/s44160-023-00305-7

Zhang, F. et al. Nat. Synth. 3, 1039–1048 (2024): https://doi.org/10.1038/s44160-024-00569-7

Li, H. et al. Sci. Adv. 9, eadi6595 (2023): https://doi.org/10.1126/sciadv.adi6595

Supplementary information

Supplementary Information

Supplementary Methods, and Table 1.

Reporting Summary

Source data

Source Data Tables 1 and 2

Detailed information about the synthesis of various NdPW11 nanosheets. Detailed information about the semi-hydrogenation reaction.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Shi, W., Liu, Q. et al. Modular assembly of polyoxometalate clusters at the sub-1 nm scale. Nat Protoc (2025). https://doi.org/10.1038/s41596-025-01212-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-025-01212-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing