Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Scalable growth of vertical graphene nanosheets by thermal chemical vapor deposition

Abstract

Vertical graphene nanosheets (VGSs) are a kind of graphene materials, which retain the inherent advantages of graphene and effectively overcome the stacking bottleneck displayed by traditional graphene. The scalable production of VGSs may help the development of devices such as field-effect transistors, sensors, biomedical materials, electrochemical energy storage, thermal conductive materials and catalyst supports. The thermal chemical vapor deposition (CVD) approach has become a mature, efficient and highly valuable industrial strategy for VGSs fabrication. This technique imposes no restrictions on the morphology and size of the substrate and has high yield and low equipment cost, making it suitable for scalable industrial applications. Here we detail the step-by-step instructions for growing VGSs on a variety of common substrates such as carbon nanofibers, carbon fibers and Si particles using the thermal CVD approach. The scalability of thermal CVD could help advance the development of industrial applications of VGSs composite materials. The procedure requires a total of 136 h and 45 min to successfully produce VGSs on C and Si substrates, followed by a comprehensive characterization of the nanosheets. The procedure is suitable for users with expertise in chemistry or materials science.

Key points

  • In this Protocol, we describe the synthesis of vertical graphene nanosheets (VGSs) via scalable thermal chemical vapor deposition using a tubular furnace in which C or Si materials are placed for heating, with CH4 and H2 introduced at high temperatures to enable a chemical reaction that in situ forms VGSs on the substrate surface.

  • The VGSs exhibit high conductivity, sensitivity and biocompatibility, making them suitable for applications in diverse fields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustrations of the thermal CVD method for the growth of VGSs on CNFs or CFs and Si.
Fig. 2: The thermal CVD experimental setup.
Fig. 3: Photographs of the thermal CVD products.
Fig. 4: The SEM images of thermal CVD products.
Fig. 5: The TEM images of thermal CVD products.
Fig. 6: The XRD pattern of thermal CVD products.
Fig. 7: The Raman spectra of thermal CVD products.

Similar content being viewed by others

Data availability

The main data supporting the findings of this study were previously published in refs. 24,37,45. The additional data are supplemented in the Supplementary Information or are available from the corresponding author upon reasonable request.

References

  1. Meyer, J. et al. The structure of suspended graphene sheets. Nature 446, 60–63 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Geim, A. & Novoselov, K. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Dresselhaus, M. S. & Araujo, P. T. Perspectives on the 2010 Nobel Prize in Physics for graphene. ACS Nano 4, 6297–6302 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Chung, K., Lee, C.-H. & Yi, G.-C. Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices. Science 330, 655–657 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Lin, Y.-M. et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science 327, 662–662 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Akinwande, D. & Kireev, D. Wearable graphene sensors use ambient light to monitor health. Nature 576, 220–221 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Kostarelos, K. & Novoselov, K. S. Exploring the interface of graphene and biology. Science 344, 261–263 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. El-Kady, M. F., Strong, V., Dubin, S. & Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326–1330 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Sun, H. et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356, 599–604 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, C. et al. Ti1–graphene single-atom material for improved energy level alignment in perovskite solar cells. Nat. Energy 6, 1154–1163 (2021).

    Article  CAS  Google Scholar 

  12. Kosmala, T. et al. Operando visualization of the hydrogen evolution reaction with atomic-scale precision at different metal–graphene interfaces. Nat. Catal. 4, 850–859 (2021).

    Article  CAS  Google Scholar 

  13. Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Jin, E. et al. Two-dimensional sp2 carbon-conjugated covalent organic frameworks. Science 357, 673–676 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S. & Coleman, J. N. Liquid exfoliation of layered materials. Science 340, 1226419 (2013).

    Article  Google Scholar 

  16. Koltonow, A. R. & Huang, J. Two-dimensional nanofluidics. Science 351, 1395–1396 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, C. et al. Single-crystalline van der Waals layered dielectric with high dielectric constant. Nat. Mater. 22, 832–837 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Stankovich, S. et al. Graphene-based composite materials. Nature 442, 282–286 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Voiry, D. et al. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science 353, 1413–1416 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Kumar, S., Van der Laan, T., Rider, A. E., Randeniya, L. & Ostrikov, K. Multifunctional three-dimensional T-junction graphene micro-wells: energy-efficient, plasma-enabled growth and instant water-based transfer for flexible device applications. Adv. Funct. Mater. 24, 6114–6122 (2014).

    Article  CAS  Google Scholar 

  21. Zhao, J., Shaygan, M., Eckert, J., Meyyappan, M. & Rümmeli, M. H. A growth mechanism for free-standing vertical graphene. Nano Lett. 14, 3064–3071 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Seo, D. H., Han, Z. J., Kumar, S. & Ostrikov, K. Structure-controlled, vertical graphene-based, binder-free electrodes from plasma-reformed butter enhance supercapacitor performance. Adv. Energy Mater. 3, 1316–1323 (2013).

    Article  CAS  Google Scholar 

  23. Zhang, Z., Lee, C.-S. & Zhang, W. Vertically aligned graphene nanosheet arrays: synthesis, properties and applications in electrochemical energy conversion and storage. Adv. Energy Mater. 7, 1700678 (2017).

    Article  Google Scholar 

  24. Zeng, J. et al. 3D graphene fibers grown by thermal chemical vapor deposition. Adv. Mater. 30, 1705380 (2018).

    Article  Google Scholar 

  25. Seo, D. H., Rider, A. E., Han, Z. J., Kumar, S. & Ostrikov, K. Plasma break-down and re-build: same functional vertical graphenes from diverse natural precursors. Adv. Mater. 25, 5638–5642 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Xu, S. et al. Vertical graphene arrays as electrodes for ultra-high energy density AC line-filtering capacitors. Angew. Chem. Int. Ed. 60, 24505–24509 (2021).

    Article  CAS  Google Scholar 

  27. Xu, S. et al. Direct growth of vertical graphene on fiber electrodes and its application in alternating current line-filtering capacitors. ACS Nano 18, 24154–24161 (2024).

    Article  CAS  PubMed  Google Scholar 

  28. Park, S. et al. Nanoarchitectonics of MXene derived TiO2/Graphene with vertical alignment for achieving the enhanced supercapacitor performance. Small 20, 2305311 (2024).

    Article  CAS  Google Scholar 

  29. Yoon, Y. et al. Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors. ACS Nano 8, 4580–4590 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Dai, W. et al. Metal-level thermally conductive yet soft graphene thermal interface materials. ACS Nano 13, 11561–11571 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Kim, J. H. et al. Advanced boiling-a scalable strategy for self-assembled three-dimensional graphene. ACS Nano 15, 2839–2848 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Li, W. et al. Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation. Nano Res. 13, 3048–3056 (2020).

    Article  CAS  Google Scholar 

  33. Wang, C. et al. Direct conversion of waste tires into three-dimensional graphene. Energy Storage Mater. 23, 499–507 (2019).

    Article  Google Scholar 

  34. Greiner, A. & Wendorff, J. H. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 46, 5670–5673 (2007).

    Article  CAS  Google Scholar 

  35. Zhao, L. et al. Carbon nanofibers with radially grown graphene sheets derived from electrospinning for aqueous supercapacitors with high working voltage and energy density. Nanoscale 5, 4902–4909 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Yan, K., Peng, H., Zhou, Y., Li, H. & Liu, Z. Formation of bilayer bernal graphene: Layer-by-layer epitaxy via chemical vapor deposition. Nano Lett. 11, 1106–1110 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Ji, X. et al. Graphene/MoS2/FeCoNi(OH)x and Graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting. Nat. Commun. 12, 1380 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tian, Y.-F. et al. Tailoring chemical composition of solid electrolyte interphase by selective dissolution for long-life micron-sized silicon anode. Nat. Commun. 14, 7247 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Han, X. et al. Manipulating charge-transfer kinetics and a flow-domain LiF-rich interphase to enable high-performance microsized silicon-silver-carbon composite anodes for solid-state batteries. Energy Environ. Sci. 16, 5395–5408 (2023).

    Article  CAS  Google Scholar 

  40. Akin, C. et al. Contactless determination of electrical conductivity of one-dimensional nanomaterials by solution-based electro-orientation spectroscopy. ACS Nano 9, 5405–5412 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, C. & Nicolosi, V. Graphene and MXene-based transparent conductive electrodes and supercapacitors. Energy Storage Mater. 16, 102–125 (2019).

    Article  Google Scholar 

  42. Huo, H. et al. Chemo-mechanical failure mechanisms of the silicon anode in solid-state batteries. Nat. Mater. 23, 543–551 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, X. et al. Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation. Nat. Commun. 11, 3826 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang, Y. et al. Capacity recovery by transient voltage pulse in silicon-anode batteries. Science 386, 322–327 (2024).

    Article  CAS  PubMed  Google Scholar 

  45. Yu, P. et al. Hierarchical yolk-shell silicon/carbon anode materials enhanced by vertical graphene sheets for commercial lithium-ion battery applications. Adv. Funct. Mater. 35, 2413081 (2025).

    Article  CAS  Google Scholar 

  46. Lin, L., Deng, B., Sun, J., Peng, H. & Liu, Z. Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene. Chem. Rev. 118, 9281–9343 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Wu, P., Zhang, W., Li, Z. & Yang, J. Mechanisms of graphene growth on metal surfaces: Theoretical perspectives. Small 10, 2136–2150 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Kim, H. et al. Activation energy paths for graphene nucleation and growth on Cu. ACS Nano 6, 3614–3623 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Gao, J., Yip, J., Zhao, J., Yakobson, B. I. & Ding, F. Graphene nucleation on transition metal surface: Structure transformation and role of the metal step edge. J. Am. Chem. Soc. 133, 5009–5015 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Deng, C. et al. Ultrasensitive and highly stretchable multifunctional strain sensors with timbre-recognition ability based on vertical graphene. Adv. Funct. Mater. 29, 1907151 (2019).

    Article  CAS  Google Scholar 

  52. Ryu, B., Kim, C.-Y., Park, S.-P., Lee, K. Y. & Lee, S. In vivo implantable strain sensor for real-time and precise pathophysiological monitoring of contractile living organs. Adv. Funct. Mater. 33, 2305769 (2023).

    Article  CAS  Google Scholar 

  53. Guan, S. et al. Metainterface heterostructure enhances sonodynamic therapy for disrupting secondary biofilms. ACS Nano 18, 15114–15129 (2024).

    Article  CAS  PubMed  Google Scholar 

  54. Xu, S. et al. Electric-field-assisted growth of vertical graphene arrays and the application in thermal interface materials. Adv. Funct. Mater. 30, 2003302 (2020).

    Article  CAS  Google Scholar 

  55. Cheng, Y. et al. Graphene infrared radiation management targeting photothermal conversion for electric-energy-free crude oil collection. J. Am. Chem. Soc. 144, 15562–15568 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, X. et al. Amorphous MoSxCly electrocatalyst supported by vertical graphene for efficient electrochemical and photoelectrochemical hydrogen generation. Energy Environ. Sci. 8, 862–868 (2015).

    Article  CAS  Google Scholar 

  57. Tsounis, C. Valence alignment of mixed Ni–Fe hydroxide electrocatalysts through preferential templating on graphene edges for enhanced oxygen evolution. ACS Nano 14, 11327–11340 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Yu, F. et al. Vertical-graphene-reinforced titanium alloy bipolar plates in fuel cells. Adv. Mater. 34, 2110565 (2022).

    Article  CAS  Google Scholar 

  59. Ren, F. et al. Pseudocapacitance induced uniform plating/stripping of Li metal anode in vertical graphene nanowalls. Adv. Funct. Mater. 28, 1805638 (2018).

    Article  Google Scholar 

  60. Ci, H. et al. Defective VSe2–graphene heterostructures enabling in situ electrocatalyst evolution for lithium–sulfur batteries. ACS Nano 14, 11929–11938 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Li, C. et al. Directly grown vertical graphene carpets as Janus separators toward stabilized Zn metal anodes. Adv. Mater. 32, 2003425 (2020).

    Article  CAS  Google Scholar 

  62. Cao, Q. et al. Regulating dendrite-free zinc deposition by 3D zincopilic nitrogen-doped vertical graphene for high-performance flexible Zn-ion batteries. Adv. Funct. Mater. 31, 2103922 (2021).

    Article  CAS  Google Scholar 

  63. Du, J. et al. Synergistic vertical graphene-exsolved perovskite to boost reaction kinetics for flexible zinc–Air batteries. Adv. Funct. Mater. 35, 2415351 (2025).

    Article  CAS  Google Scholar 

  64. Xie, D. et al. Exploring advanced sandwiched arrays by vertical graphene and N-doped carbon for enhanced sodium storage. Adv. Energy Mater. 7, 1601804 (2017).

    Article  Google Scholar 

  65. Lu, C. et al. Synchronous promotion in sodiophilicity and conductivity of flexible host via vertical graphene cultivator for longevous sodium metal batteries. Adv. Funct. Mater. 31, 2101233 (2021).

    Article  CAS  Google Scholar 

  66. Liang, C. et al. Green synthesis of graphite from CO2 without graphitization process of amorphous carbon. Nat. Commun. 12, 119 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Graf, D. et al. Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett. 7, 238–242 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All authors acknowledge supports from the National Natural Science Foundation of China (grant no. 52172084), the Talent Recruitment Project of Guangdong Province (grant no. 2019QN01C883) and the Shenzhen Science and Technology Program (grant nos. RCJC20231211090017038 and JCYJ20220818102402004).

Author information

Authors and Affiliations

Authors

Contributions

Q.W. drafted the manuscript. X.J. and P.Y. discussed the section of anticipated results. Y.C. and Z.L. contributed to the collection and adaption of the figures. Y.H. and J.Y. developed the protocol and modified the manuscript.

Corresponding authors

Correspondence to Jie Yu  (于杰) or Yan Huang  (黄燕).

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Stefanos Chaitoglou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Zeng, J. et al. Adv. Mater. 30, 1705380 (2018): https://doi.org/10.1002/adma.201705380

Ji, X. et al. Nat. Commun. 12, 1380 (2021): https://doi.org/10.1038/s41467-021-21742-y

Yu, P. et al. Adv. Funct. Mater. 35, 2413081 (2025): https://doi.org/10.1002/adfm.202413081

Supplementary information

Supplementary Information

Supplementary Figs. 1–5 and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Ji, X., Yu, P. et al. Scalable growth of vertical graphene nanosheets by thermal chemical vapor deposition. Nat Protoc (2025). https://doi.org/10.1038/s41596-025-01219-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-025-01219-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing