Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Metabolomics using anion-exchange chromatography mass spectrometry for the analysis of cells, tissues and biofluids

Abstract

The direct coupling of ion-exchange chromatography with mass spectrometry using electrochemical ion suppression creates a hyphenated technique with selectivity and specificity for the analysis of highly polar and ionic compounds. The technique has enabled new applications in environmental chemistry, food chemistry, forensics, cell biology and, more recently, metabolomics. Robust, reproducible and quantitative methods for the analysis of highly polar and ionic metabolites help meet a longstanding analytical need in metabolomics. Here, we provide step-by-step instructions for both untargeted and semi-targeted metabolite analysis from cell, tissue or biofluid samples by using anion-exchange chromatography–high-resolution tandem mass spectrometry (AEC-MS/MS). The method requires minimal sample preparation and is robust, sensitive and selective. It provides comprehensive coverage of hundreds of metabolites found in primary and secondary metabolic pathways, including glycolysis, the pentose phosphate pathway, the tricarboxylic acid cycle, purine and pyrimidine metabolism, amino acid degradation and redox metabolism. An inline electrolytic ion suppressor is used to quantitatively neutralize OH ions in the eluent stream, after chromatographic separation, enabling AEC to be directly coupled with MS. Counter ions are also removed during this process, creating a neutral pH, aqueous eluent with a simplified matrix optimal for negative ion MS analysis. Sample preparation through to data analysis and interpretation is described in the protocol, including a guide to which metabolites and metabolic pathways are suitable for analysis by using AEC-MS/MS.

Key points

  • This protocol uses an integrated ion-chromatography-mass spectrometry system that incorporates in-line eluent generation and electrochemical ion suppression for the analysis of metabolites in cells, tissues and biofluids.

  • Highly sensitive, selective, reproducible and robust, this protocol provides an alternative to methods such as HILIC-MS and ion-pairing-MS, which can be more limited by analytical conditions and provide different metabolite coverage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Benchmarking method validation parameters between HILIC-MS/MS and AEC-MS/MS for untargeted metabolomics analysis of authentic metabolite standards and cell extracts.
Fig. 2: AEC-MS/MS metabolomics protocol.
Fig. 3: Anticipated results for untargeted studies.

Similar content being viewed by others

Data availability

The main data discussed in this protocol are available in the supporting primary research papers (https://doi.org/10.1038/s42003-020-0957-6 and https://doi.org/10.1038/s41467-022-34095-x). The raw datasets have also been deposited in publicly available repositories for research purposes, and any further data are available from the corresponding author upon reasonable request. Source data for Fig. 1 is available in the Oxford University Research Archive with the identifiers https://doi.org/10.5287/bodleian:2abVOAvrg and https://doi.org/10.5287/bodleian:eyq4Qj8AR (ref. 19). Source data for Fig. 3 are available in Supplementary Data 6.

References

  1. Bennett, B. D. et al. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5, 593–599 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hu, T. et al. Metabolic regulation of the immune system in health and diseases: mechanisms and interventions. Signal Transduct. Target. Ther. 9, 268 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ayari, A. et al. Influenza infection rewires energy metabolism and induces browning features in adipose cells and tissues. Commun. Biol. 3, 237 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Haythorne, E. et al. Altered glycolysis triggers impaired mitochondrial metabolism and mTORC1 activation in diabetic β-cells. Nat. Commun. 13, 6754 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, Q. et al. Energy metabolism: a critical target of cardiovascular injury. Biomed. Pharmacother. 165, 115271 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. De Vos, R. C. et al. Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2, 778–791 (2007).

    Article  PubMed  Google Scholar 

  7. Want, E. J. et al. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat. Protoc. 8, 17–32 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Want, E. J. et al. Global metabolic profiling procedures for urine using UPLC–MS. Nat. Protoc. 5, 1005–1018 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Dunn, W. B. et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 6, 1060–1083 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Smart, K. F., Aggio, R. B., Van Houtte, J. R. & Villas-Bôas, S. G. Analytical platform for metabolome analysis of microbial cells using methyl chloroformate derivatization followed by gas chromatography–mass spectrometry. Nat. Protoc. 5, 1709–1729 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Sellick, C. A., Hansen, R., Stephens, G. M., Goodacre, R. & Dickson, A. J. Metabolite extraction from suspension-cultured mammalian cells for global metabolite profiling. Nat. Protoc. 6, 1241–1249 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Martano, G. et al. Fast sampling method for mammalian cell metabolic analyses using liquid chromatography–mass spectrometry. Nat. Protoc. 10, 1–11 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Fujii, T. et al. Direct metabolomics for plant cells by live single-cell mass spectrometry. Nat. Protoc. 10, 1445–1456 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Paglia, G. & Astarita, G. Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry. Nat. Protoc. 12, 797–813 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Yuan, H. et al. Metabolomics analysis reveals global acetoin stress response of Bacillus licheniformis. Metabolomics 15, 1–12 (2019).

    Article  Google Scholar 

  16. Zhang, J. et al. Measuring energy metabolism in cultured cells, including human pluripotent stem cells and differentiated cells. Nat. Protoc. 7, 1068–1085 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Beckmann, M., Parker, D., Enot, D. P., Duval, E. & Draper, J. High-throughput, nontargeted metabolite fingerprinting using nominal mass flow injection electrospray mass spectrometry. Nat. Protoc. 3, 486–504 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Dunn, W. B. et al. Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics 9, 44–66 (2013).

    Article  CAS  Google Scholar 

  19. Walsby-Tickle, J. et al. Anion-exchange chromatography mass spectrometry provides extensive coverage of primary metabolic pathways revealing altered metabolism in IDH1 mutant cells. Commun. Biol. 3, 247 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Walsby-Tickle, J. Investigating Isocitrate Dehydrogenase Mutations in Cancer Using New Metabolomics Methods. University of Oxford thesis (2020).

  21. Kadir, A. A. et al. On the interdependence of ketone body oxidation, glycogen content, glycolysis and energy metabolism in the heart. J. Physiol. 601, 1207–1224 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Saraç, H. et al. Systematic characterization of chromatin modifying enzymes identifies KDM3B as a critical regulator in castration resistant prostate cancer. Oncogene 39, 2187–2201 (2020).

    Article  PubMed  Google Scholar 

  23. Winter, H. et al. Identification of circulating genomic and metabolic biomarkers in intrahepatic cholangiocarcinoma. Cancers (Basel) 11, 1895 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Schulthess, J. et al. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity 50, 432–445.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Riffelmacher, T. et al. Autophagy-dependent generation of free fatty acids is critical for normal neutrophil differentiation. Immunity 47, 466–480.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vaughan-Jackson, A. et al. Density dependent regulation of inflammatory responses in macrophages. Front. Immunol. 13, 895488 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yalaz, C. et al. Cone photoreceptor phosphodiesterase PDE6H inhibition regulates cancer cell growth and metabolism, replicating the dark retina response. Cancer Metab. 12, 5 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bardella, C. et al. Expression of Idh1R132H in the murine subventricular zone stem cell niche recapitulates features of early gliomagenesis. Cancer Cell 30, 578–594 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Finelli, M. J. et al. Oxidation resistance 1 modulates glycolytic pathways in the cerebellum via an interaction with glucose-6-phosphate isomerase. Mol. Neurobiol. 56, 1558–1577 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Dearlove, D. J. et al. The effects of endogenously- and exogenously-induced hyperketonemia on exercise performance and adaptation. Physiol. Rep. 10, e15309 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Park, K. C. et al. Disrupted propionate metabolism evokes transcriptional changes in the heart by increasing histone acetylation and propionylation. Nat. Cardiovasc. Res. 2, 1221–1245 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. San Millan, A. et al. Integrative analysis of fitness and metabolic effects of plasmids in Pseudomonas aeruginosa PAO1. ISME J. 12, 3014–3024 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Then, C. K. et al. Dietary fibre supplementation enhances radiotherapy tumour control and alleviates intestinal radiation toxicity. Microbiome 12, 89 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sanchez, M. I. G., McCullagh, J., Guy, R. H. & Compton, R. G. Reverse iontophoretic extraction of metabolites from living plants and their identification by ion-chromatography coupled to high resolution mass spectrometry. Phytochem. Anal. 28, 195–201 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Smith, E. N., McCullagh, J. S. O., Ratcliffe, R. G. & Kruger, N. J. Limitations of deuterium-labelled substrates for quantifying NADPH metabolism in heterotrophic Arabidopsis cell cultures. Metabolites 9, 205 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ngere, J. B. et al. Ion-exchange chromatography coupled to mass spectrometry in life science, environmental, and medical research. Anal. Chem. 95, 152–166 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu, Y.-F., Lu, W. & Rabinowitz, J. D. Avoiding misannotation of in-source fragmentation products as cellular metabolites in liquid chromatography–mass spectrometry-based metabolomics. Anal. Chem. 87, 2273–2281 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gil, A. et al. Stability of energy metabolites—an often overlooked issue in metabolomics studies: a review. Electrophoresis 36, 2156–2169 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Schwaiger, M. et al. Anion-exchange chromatography coupled to high-resolution mass spectrometry: a powerful tool for merging targeted and non-targeted metabolomics. Anal. Chem. 89, 7667–7674 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Nanadikar, M. S. et al. IDH3γ functions as a redox switch regulating mitochondrial energy metabolism and contractility in the heart. Nat. Commun. 14, 2123 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Grotehans, N. et al. Ribonucleotide synthesis by NME6 fuels mitochondrial gene expression. EMBO J. 42, e113256 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Floros, D. J., Xu, K., Berthiller, F. & Schwartz-Zimmermann, H. Comparison of chromatographic conditions for the targeted tandem mass spectrometric determination of 354 mammalian metabolites. J. Chromatogr. A 1697, 463985 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Baghdadi, M. et al. Reduced insulin signaling in neurons induces sex-specific health benefits. Sci. Adv. 9, eade8137 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ahola, S. et al. OMA1-mediated integrated stress response protects against ferroptosis in mitochondrial cardiomyopathy. Cell Metab. 34, 1875–1891.e7 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Liu, X. & Xu, G. Recent advances in using mass spectrometry for mitochondrial metabolomics and lipidomics—a review. Anal. Chim. Acta 1037, 3–12 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Burgess, K., Creek, D., Dewsbury, P., Cook, K. & Barrett, M. P. Semi-targeted analysis of metabolites using capillary-flow ion chromatography coupled to high-resolution mass spectrometry. Rapid Commun. Mass Spectrom. 25, 3447–3452 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Corry, T. A., Jackson, B. A. & Ray, A. D. Impurity analysis of 2-butynoic acid by ion chromatography–mass spectrometry. J. Chromatogr. A 1604, 460470 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Li, X. et al. Mechanistic insights into metabolic function of dynamin-related protein 1. J. Lipid Res. 65, 100633 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tan, L., Martinez, S. A., Lorenzi, P. L. & Karlstaedt, A. Quantitative analysis of acetyl-CoA, malonyl-CoA, and succinyl-CoA in myocytes. J. Am. Soc. Mass Spectrom. 34, 2567–2574 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Chen, Y. et al. Development of a rational strategy for integration of lactate dehydrogenase A suppression into therapeutic algorithms for head and neck cancer. Br. J. Cancer 124, 1670–1679 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Masschelin, P. M. et al. Vitamin B2 enables regulation of fasting glucose availability. eLife 12, e84077 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schwartz-Zimmermann, H. E. et al. Comparison of LC-MS-based methods for the determination of carboxylic acids in animal matrices. Anal. Bioanal. Chem. 416, 1199–1215 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Carter, B. Z. et al. Targeting MCL-1 dysregulates cell metabolism and leukemia-stroma interactions and resensitizes acute myeloid leukemia to BCL-2 inhibition. Haematologica 107, 58–76 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Wei, D. et al. Targeting glutamine metabolism with a novel Na+/K+-ATPase inhibitor RX108 in hepatocellular carcinoma. Mol. Cancer Ther. 22, 693–705 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang, J. et al. Metabolomic profiling of anionic metabolites in head and neck cancer cells by capillary ion chromatography with Orbitrap mass spectrometry. Anal. Chem. 86, 5116–5124 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Sun, Y., Saito, K., Iiji, R. & Saito, Y. Application of ion chromatography coupled with mass spectrometry for human serum and urine metabolomics. SLAS Discov. 24, 778–786 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Hopsort, G., Latapie, L., Groenen Serrano, K., Loubière, K. & Tzedakis, T. Deciphering the human urine matrix: a new approach to simultaneously quantify the main ions and organic compounds by ion chromatography/mass spectrometry (IC-MS). Anal. Bioanal. Chem. 415, 5337–5352 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Liu, S. et al. Roles of metal ions in the selective inhibition of oncogenic variants of isocitrate dehydrogenase 1. Commun. Biol. 4, 1243 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wishart, D. S. et al. HMDB 5.0: the Human Metabolome Database for 2022. Nucleic Acids Res. 50, D622–D631 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Harrieder, E.-M., Kretschmer, F., Böcker, S. & Witting, M. Current state-of-the-art of separation methods used in LC-MS based metabolomics and lipidomics. J. Chromatogr. B 1188, 123069 (2022).

    Article  CAS  Google Scholar 

  61. Hu, Q., Tang, H. & Wang, Y. Challenges in analysis of hydrophilic metabolites using chromatography coupled with mass spectrometry. J. Anal. Test. 4, 140–162 (2020).

    Article  Google Scholar 

  62. Psychogios, N. et al. The human serum metabolome. PLoS One 6, e16957 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Contrepois, K., Jiang, L. & Snyder, M. Optimized analytical procedures for the untargeted metabolomic profiling of human urine and plasma by combining hydrophilic interaction (HILIC) and reverse-phase liquid chromatography (RPLC)–mass spectrometry. Mol. Cell. Proteom. 14, 1684–1695 (2015).

    Article  CAS  Google Scholar 

  64. Hosseinkhani, F. et al. Systematic evaluation of HILIC stationary phases for global metabolomics of human plasma. Metabolites 12, 165 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Amer, B., Deshpande, R. R. & Bird, S. S. Simultaneous quantitation and discovery (SQUAD) analysis: combining the best of targeted and untargeted mass spectrometry-based metabolomics. Metabolites 13, 648 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hvinden, I. C. Exploring Metabolic Vulnerability and Therapeutic Potential in Cancers with Isocitrate Dehydrogenase Mutations. University of Oxford thesis (2022).

  67. Reinbold, R. et al. Resistance to the isocitrate dehydrogenase 1 mutant inhibitor ivosidenib can be overcome by alternative dimer-interface binding inhibitors. Nat. Commun. 13, 4785 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lin, S.-C. & Hardie, D. G. AMPK: sensing glucose as well as cellular energy status. Cell Metab. 27, 299–313 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. McCullagh, J. & Probert, F. New analytical methods focusing on polar metabolite analysis in mass spectrometry and NMR-based metabolomics. Curr. Opin. Chem. Biol. 80, 102466 (2024).

    Article  CAS  PubMed  Google Scholar 

  70. Vuckovic, D. Current trends and challenges in sample preparation for global metabolomics using liquid chromatography–mass spectrometry. Anal. Bioanal. Chem. 403, 1523–1548 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Barri, T. & Dragsted, L. O. UPLC-ESI-QTOF/MS and multivariate data analysis for blood plasma and serum metabolomics: effect of experimental artefacts and anticoagulant. Anal. Chim. Acta 768, 118–128 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Bruggink, C. & Jensen, D. Combining ion chromatography with mass spectrometry and inductively coupled plasma-mass spectrometry: annual review 2020. Anal. Sci. Adv. 2, 238–249 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Thonusin, C. et al. Evaluation of intensity drift correction strategies using MetaboDrift, a normalization tool for multi-batch metabolomics data. J. Chromatogr. A 1523, 265–274 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xia, J. & Wishart, D. S. Metabolomic data processing, analysis, and interpretation using MetaboAnalyst. Curr. Protoc. Bioinforma. 34, 14.10.11–14.10.48 (2011).

    Article  Google Scholar 

  75. Pang, Z. et al. Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat. Protoc. 17, 1735–1761 (2022).

    Article  CAS  PubMed  Google Scholar 

  76. Cooper, B. & Yang, R. An assessment of AcquireX and Compound Discoverer software 3.3 for non-targeted metabolomics. Sci. Rep. 14, 4841 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Forsberg, E. M. et al. Data processing, multi-omic pathway mapping, and metabolite activity analysis using XCMS Online. Nat. Protoc. 13, 633–651 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Heuckeroth, S. et al. Reproducible mass spectrometry data processing and compound annotation in MZmine 3. Nat. Protoc. 19, 2597–2641 (2024).

    Article  CAS  PubMed  Google Scholar 

  79. Wu, Y. & Li, L. Sample normalization methods in quantitative metabolomics. J. Chromatogr. A 1430, 80–95 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Liu, X., Ser, Z., Cluntun, A. A., Mentch, S. J. & Locasale, J. W. A strategy for sensitive, large scale quantitative metabolomics. J. Vis. Exp. 2014, 51358 (2014).

    Google Scholar 

  81. Szymańska, E., Saccenti, E., Smilde, A. K. & Westerhuis, J. A. Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics 8, 3–16 (2012).

    Article  PubMed  Google Scholar 

  82. Schrimpe-Rutledge, A. C., Codreanu, S. G., Sherrod, S. D. & McLean, J. A. Untargeted metabolomics strategies—challenges and emerging directions. J. Am. Soc. Mass Spectrom. 27, 1897–1905 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all those who have been involved and contributed to establishing IC-MS in the McCullagh Lab, in particular, J. Harvey, E. Smith, A. Nazeer and J. Gannon. We are grateful to all the staff at the Mass Spectrometry Research Facility, Department of Chemistry, for their support. We also thank E. Haythorne (University of Edinburgh) and F. Ashcroft (University of Oxford) for their collaboration exploring pancreatic islet beta-cell function using AEC-MS/MS. J.S.O.M. acknowledges funding from the University of Oxford John Fell Fund (JFF142/116) to develop a metabolites standards database; a Wellcome Trust Seed Award in Science (204483/Z/16/Z), which helped establish the method; and BBSRC funding (BB/R013829/1), which provided equipment that supported this project. J.S.O.M. and R.W. acknowledge a Thermo Fisher Scientific Industry Collaboration, which provided funding and equipment that have supported recent parts of this work. I.C.H. thanks the Anne Grete Eidsvig and Kjell Inge Røkke Foundation for Education for an Aker Scholarship, which funded her D.Phil. at Oxford, where this protocol was developed. T.K. acknowledges an EPSRC Doctoral Training Partnership (EP/W524311/1) and Numares AG (Am Biopark 9, 93053 Regensburg-Graß, Germany) for funding her D. Phil. We thank T. Christison, W. C. Man, N. Rumachik, B. Amer, R. R. Deshpande, V. Jespers and S. S. Bird at Thermo Fisher Scientific for their continued help and support. Special thanks to A. Huhmer, who helped get the ball rolling!

Author information

Authors and Affiliations

Authors

Contributions

J.S.O.M. and J.W.-T. conceived and developed the original method. R.W. provided major updates. R.W., J.W.-T., I.C.H., J.B.N., T.K., J.S. and J.S.O.M. performed laboratory experiments. R.W., J.W.-T., I.C.H., M.M., K.V.L., E.P., T.K., D.H. and J.S. developed methods and tested workflows. J.W.-T., I.C.H., I.L., D.H., J.S., T.K., R.W., T.C.-H. and J.S.O.M. worked on the data-analysis pipeline. J.S.O.M. supervised the project and co-wrote the manuscript with R.W. All authors edited the manuscript.

Corresponding author

Correspondence to James S. O. McCullagh.

Ethics declarations

Competing interests

J.S.O.M. has a research collaboration with Thermo Fisher Scientific, and R.W.’s D.Phil. is supported by funding from Thermo Fisher Scientific. J.B.N. contributed to this research while a postdoc in the McCullagh group. She currently works for Thermo Fisher Scientific.

Peer review

Peer review information

Nature Protocols thanks Gary Williamson, Heidi Schwartz-Zimmermann and Markus Aigensberger for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Walsby-Tickle, J. et al. Commun. Biol. 3, 247 (2020): https://doi.org/10.1038/s42003-020-0957-6

Haythorne, E. et al. Nat. Commun. 13, 6754 (2022): https://doi.org/10.1038/s41467-022-34095-x

Schulthess, J. et al. Immunity 50, 432–445.e7 (2019): https://doi.org/10.1016/j.immuni.2018.12.018

Then, C. et al. Microbiome 12, 89 (2024): https://doi.org/10.1186/s40168-024-01804-1

Ngere, J. et al. Anal. Chem. 95, 152–166 (2023): https://doi.org/10.1021/acs.analchem.2c04298

Supplementary information

Supplementary Information

Supplementary Figures 1 and 2 and Supplementary Method 1

Reporting Summary

Supplementary Table 1

Validation metrics for a selection of metabolite standards analyzed on the AEC-MS/MS method including sensitivity, linearity and RT stability. Supplementary Table 2 Selection of metrics to assess system suitability for citrate, lactose, fructose-1,6-bisphosphate and 2-hydroxyglutarate from analysis of our metabolite standard mixes. Supplementary Data 1 Chemical compositions of our metabolite standard mixes. Supplementary Data 2 Additional autosampler parameters for the AEC-MS/MS method Supplementary Data 3 AEC-MS/MS parameters for an ICS-6000 coupled to an Exploris 240; AEC-MS/MS RT database for metabolite identification. Supplementary Data 4 Example output from Progenesis QI after metabolite identification Supplementary Data 5 Example of the modified Progenesis QI output for use with Statistical Analysis within MetaboAnalyst. Supplementary Data 6 Example of the modified Progenesis QI output for use with Functional Analysis within MetaboAnalyst

Supplementary Method 2

Workflow template for use with AEC-MS/MS data in Compound Discoverer 3.3

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, R., Walsby-Tickle, J., Hvinden, I.C. et al. Metabolomics using anion-exchange chromatography mass spectrometry for the analysis of cells, tissues and biofluids. Nat Protoc (2025). https://doi.org/10.1038/s41596-025-01222-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-025-01222-z

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research