Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Derivation, expansion and cryopreservation of primary fetal organoids from second and third trimester human amniotic fluid cells

Abstract

Human primary fetal stem cell-derived organoids are used to model developing tissues in vitro. However, ethical and legislative constraints restrict fresh fetal tissue collection in several countries. Amniotic fluid (AF) is easily accessible with minimal ethical and regulatory constraints for collection. Our team recently showed that tissue-specific stem/progenitor cells can be isolated from fetal fluids collected during pregnancy through clinically indicated minimally invasive procedures conducted during the second and third trimesters. These samples consistently generate fetal lung, kidney tubule and gastrointestinal epithelial organoids autologous to the developing fetus. AF-derived organoids (AFOs) allow the investigation of fetal epithelia at developmentally relevant stages. Moreover, AFOs allow research to be conducted on late gestational stages, hardly accessible with other methods. Here, we provide a detailed protocol to establish, characterize and cryopreserve AFOs from viable AF cells. This includes the processing of patient-derived AF samples, viable cell sorting, seeding, establishment of clonal AFO lines, tissue phenotyping, expansion and cryopreservation. Additionally, we describe a straightforward immunofluorescence-based approach to pinpoint the tissue identity of the AFOs in a quick and cost-effective manner. In our hands, the protocol enabled the generation of primary fetal AFOs from 85.71% of samples (62.5% ascribed to the fetal lung, 59.4% to the kidney tubule and 6.2% to the small intestine). It takes 4–6 weeks to implement, requiring only standard equipment and expertise commonly available in cell biology laboratories.

Key points

  • This Protocol describes the derivation, expansion and cryopreservation of primary organoids from second and third trimester human amniotic fluid cells. These samples generate lung, kidney tubule and gastrointestinal epithelial organoids autologous to the developing fetus.

  • The generation of organoids from fetal tissue is often challenging owing to ethical and legal constraints. Generating fetal epithelial organoids from amniotic fluid cells enables overcoming some of these limitations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the Protocol steps.
Fig. 2: Isolation of viable cells from human AF.
Fig. 3: Establishment of clonal AF-derived organoid lines.
Fig. 4: Passaging and clonal expansion of AF-derived organoids.
Fig. 5: Characterization of the organoids’ tissue identity.
Fig. 6: Cryopreservation and thawing of AF-derived organoids.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the paper and the supporting primary research paper9. Source data are provided with this paper.

References

  1. Zhao, O. Z. et al. Organoids. Nat. Rev. Methods Primers 2, 1–21 (2022).

    Article  Google Scholar 

  2. Calà, G., Sina, B., De Coppi, P., Giobbe, G. G. & Gerli, M. F. M. Primary human organoids models: current progress and key milestones. Front. Bioeng. Biotechnol. 11, 320 (2023).

    Article  Google Scholar 

  3. Jensen, K. B. & Little, M. H. Organoids are not organs: sources of variation and misinformation in organoid biology. Stem Cell Rep. 18, 1255–1270 (2023).

    Article  Google Scholar 

  4. Gerrelli, D., Lisgo, S., Copp, A. J. & Lindsay, S. Enabling research with human embryonic and fetal tissue resources. Development 142, 3073–3076 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Abortion care. RCOG https://www.rcog.org.uk/for-the-public/browse-our-patient-information/abortion-care/ (2012).

  6. Fetal tissue research: a weapon and a casualty in the war against abortion. Guttmacher Institute https://www.guttmacher.org/gpr/2016/fetal-tissue-research-weapon-and-casualty-war-against-abortion (2016).

  7. McCune, J. M. & Weissman, I. L. The ban on US government funding research using human fetal tissues: how does this fit with the nih mission to advance medical science for the benefit of the citizenry? Stem Cell Rep. 13, 777–786 (2019).

    Article  Google Scholar 

  8. Brumbaugh, J., Aguado, B. A., Lysaght, T. & Goldstein, L. S. B. Human fetal tissue is critical for biomedical research. Stem Cell Rep. 18, 2300–2312 (2023).

    Article  Google Scholar 

  9. Gerli, M. F. M. et al. Single-cell guided prenatal derivation of primary fetal epithelial organoids from human amniotic and tracheal fluids. Nat. Med. 30, 875–887 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Underwood, M. A., Gilbert, W. M. & Sherman, M. P. Amniotic fluid: not just fetal urine anymore. J. Perinat. 25, 341–348 (2005).

    Article  Google Scholar 

  11. Beall, M. H., van den Wijngaard, J. P. H. M., van Gemert, M. & Ross, M. G. in Nephrology and Fluid/Electrolyte Physiology 3–18 (Springer, 2019); https://doi.org/10.1016/B978-0-323-53367-6.00001-7.

  12. Deprest, J. A. et al. Randomized trial of fetal surgery for severe left diaphragmatic hernia. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2027030 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Deprest, J. A. et al. Randomized trial of fetal surgery for moderate left diaphragmatic hernia. New Engl. J. Med. 385, 119–129 (2021).

  14. De Coppi, P. et al. Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. 25, 100–106 (2007).

    Article  PubMed  Google Scholar 

  15. Senat, M.-V. et al. Endoscopic laser surgery versus serial amnioreduction for severe twin-to-twin transfusion syndrome. N. Engl. J. Med. 351, 136–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Adzick, N. S. et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N. Engl. J. Med. 364, 993–1004 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. He, P. et al. A human fetal lung cell atlas uncovers proximal-distal gradients of differentiation and key regulators of epithelial fates. Cell 185, 4841–4860.e25 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Lim, K. et al. Organoid modeling of human fetal lung alveolar development reveals mechanisms of cell fate patterning and neonatal respiratory disease. Cell Stem Cell 30, 20–37.e9 (2022).

  19. Kraiczy, J. et al. DNA methylation defines regional identity of human intestinal epithelial organoids and undergoes dynamic changes during development. Gut 68, 49–61 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Elmentaite, R. et al. Single-cell sequencing of developing human gut reveals transcriptional links to childhood Crohn’s disease. Dev. Cell 55, 771–783.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wesley, B. T. et al. Single-cell atlas of human liver development reveals pathways directing hepatic cell fates. Nat. Cell Biol. 24, 1487–1498 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Andersson-Rolf, A. et al. Long-term in vitro expansion of a human fetal pancreas stem cell that generates all three pancreatic cell lineages. Cell https://doi.org/10.1016/j.cell.2024.10.044 (2024).

  23. Miller, A. J. et al. In vitro and in vivo development of the human airway at single-cell resolution. Dev. Cell 53, 117–128.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fordham, R. P. et al. Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury. Cell Stem Cell 13, 734–744 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sheridan, M. A. et al. Establishment and differentiation of long-term trophoblast organoid cultures from the human placenta. Nat. Protoc. 15, 3441–3463 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Liang, J. et al. Modeling human thyroid development by fetal tissue-derived organoid culture. Adv. Sci. https://doi.org/10.1002/ADVS.202105568 (2022).

    Article  Google Scholar 

  27. Minimally invasive derivation of primary human epithelial organoids from fetal fluids. Nat. Med. https://doi.org/10.1038/s41591-024-02831-z (2024).

  28. Geurts, M. H. & Clevers, H. CRISPR engineering in organoids for gene repair and disease modelling. Nat. Rev. Bioeng. 1, 32–45 (2023).

    Article  CAS  Google Scholar 

  29. Schwank, G. et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13, 653–658 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Ringel, T. et al. Genome-scale CRISPR screening in human intestinal organoids identifies drivers of TGF-β resistance. Cell Stem Cell 26, 431–440.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Pagliaro, A., Andreatta, F., Finger, R., Artegiani, B. & Hendriks, D. Generation of human fetal brain organoids and their CRISPR engineering for brain tumor modeling. Nat. Protoc. https://doi.org/10.1038/s41596-024-01107-7 (2025).

  32. Artegiani, B. & Hendriks, D. Organoids from pluripotent stem cells and human tissues: when two cultures meet each other. Dev. Cell 60, 493–511 (2025).

    Article  CAS  PubMed  Google Scholar 

  33. Lim, K. et al. A novel human fetal lung-derived alveolar organoid model reveals mechanisms of surfactant protein C maturation relevant to interstitial lung disease. EMBO J. 44, 639–664 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Driehuis, E., Kretzschmar, K. & Clevers, H. Establishment of patient-derived cancer organoids for drug-screening applications. Nat. Protoc. 15, 3380–3409 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Boretto, M. et al. Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening. Nat. Cell Biol. 21, 1041–1051 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Ebisudani, T. et al. Direct derivation of human alveolospheres for SARS-CoV-2 infection modeling and drug screening. Cell Rep. 35, 109218 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim, J., Koo, B. K. & Knoblich, J. A. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21, 571–584 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hu, C. et al. Organoids and organoids-on-a-chip as the new testing strategies for environmental toxicology—applications & advantages. Environ. Int. 184, 108415 (2024).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, Y., Wang, L., Zhu, Y. & Qin, J. Human brain organoid-on-a-chip to model prenatal nicotine exposure. Lab Chip 18, 851–860 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Winkler, A. S. et al. Human airway organoids and microplastic fibers: a new exposure model for emerging contaminants. Environ. Int. 163, 107200 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Verstegen, M. M. A. et al. Clinical applications of human organoids. Nat. Med. 31, 409–421 (2025).

    Article  CAS  PubMed  Google Scholar 

  42. Sachs, N. et al. Long-term expanding human airway organoids for disease modeling. EMBO J. 38, e100300 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Schutgens, F. et al. Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nat. Biotechnol. 37, 303–313 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Roos, F. J. M. et al. Human bile contains cholangiocyte organoid-initiating cells which expand as functional cholangiocytes in non-canonical Wnt stimulating conditions. Front. Cell Dev. Biol. https://doi.org/10.3389/fcell.2020.630492 (2021).

  45. Cindrova-Davies, T. et al. Menstrual flow as a non-invasive source of endometrial organoids. Commun. Biol. 4, 1–8 (2021).

    Article  Google Scholar 

  46. Huang, X.-Z. et al. Single-cell sequencing of ascites fluid illustrates heterogeneity and therapy-induced evolution during gastric cancer peritoneal metastasis. Nat. Commun. 14, 1–22 (2023).

    Google Scholar 

  47. Liang, J., Li, X., Dong, Y. & Zhao, B. Modeling human organ development and diseases with fetal tissue-derived organoids. Cell Transplant. 31, 9636897221124481 (2022).

    Article  PubMed  Google Scholar 

  48. Haniffa, M. et al. A roadmap for the Human Developmental Cell Atlas. Nature 597, 196–205 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. de Coppi, P. et al. Regenerative medicine: prenatal approaches. Lancet Child Adolesc. Health 6, 643–653 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kretzschmar, K. & Clevers, H. Wnt/β-catenin signaling in adult mammalian epithelial stem cells. Dev. Biol. 428, 273–282 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Beumer, J. & Clevers, H. Hallmarks of stemness in mammalian tissues. Cell Stem Cell 31, 7–24 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rossi, G., Manfrin, A. & Lutolf, M. P. Progress and potential in organoid research. Nat. Rev. Genet. 19, 671–687 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Combes, A. N., Zappia, L., Er, P. X., Oshlack, A. & Little, M. H. Single-cell analysis reveals congruence between kidney organoids and human fetal kidney. Genome Med. 11, 1–15 (2019).

    Article  Google Scholar 

  55. Navaratnam, K. & Alfirevic, Z. Amniocentesis and chorionic villus sampling. BJOG 129, e1–e15 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Cao, J. et al. A human cell atlas of fetal gene expression. Science https://doi.org/10.1126/science.aba772 (2020).

  57. Camp, J. G., Wollny, D. & Treutlein, B. Single-cell genomics to guide human stem cell and tissue engineering. Nat. Methods 15, 661–667 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Wapner, R. J. et al. Chromosomal microarray versus karyotyping for prenatal diagnosis. N. Engl. J. Med. 367, 2175–2184 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shear, M. A., Robinson, P. N. & Sparks, T. N. Fetal imaging, phenotyping, and genomic testing in modern prenatal diagnosis. Best. Pract. Res. Clin. Obstet. Gynaecol. 98, 102575 (2025).

    Article  PubMed  Google Scholar 

  60. Beall, M. H., van den Wijngaard, J. P. H. M., van Gemert, M. J. C. & Ross, M. G. Amniotic fluid water dynamics. Placenta 28, 816–823 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Dobreva, M. P., Pereira, P. N. G., Deprest, J. & Zwijsen, A. On the origin of amniotic stem cells: of mice and men. Int. J. Dev. Biol. 54, 761–777 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Gosden, C. M. Amniotic fluid cell types and culture. Br. Med. Bull. 39, 348–354 (1983).

    Article  CAS  PubMed  Google Scholar 

  63. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Pleguezuelos-Manzano, C. et al. Establishment and culture of human intestinal organoids derived from adult stem cells. Curr. Protoc. Immunol. 130, e106 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538, 260–264 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Roerink, S. F. et al. Intra-tumour diversification in colorectal cancer at the single-cell level. Nature 556, 457–462 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Meran, L., Tullie, L., Eaton, S., De Coppi, P. & Li, V. S. W. Bioengineering human intestinal mucosal grafts using patient-derived organoids, fibroblasts and scaffolds. Nat. Protoc. https://doi.org/10.1038/s41596-022-00751-1 (2022).

  68. Gao, N., White, P. & Kaestner, K. H. Establishment of intestinal identity and epithelial–mesenchymal signaling by Cdx2. Dev. Cell 16, 588 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Grainger, S., Savory, J. G. A. & Lohnes, D. Cdx2 regulates patterning of the intestinal epithelium. Dev. Biol. 339, 155–165 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Kumar, N. et al. The lineage-specific transcription factor CDX2 navigates dynamic chromatin to control distinct stages of intestine development. Development 146, dev172189 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bouchard, M., Souabni, A., Mandler, M., Neubüser, A. & Busslinger, M. Nephric lineage specification by Pax2 and Pax8. Genes Dev. 16, 2958–2970 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Narlis, M., Grote, D., Gaitan, Y., Boualia, S. K. & Bouchard, M. Pax2 and Pax8 regulate branching morphogenesis and nephron differentiation in the developing kidney. J. Am. Soc. Nephrol. 18, 1121–1129 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Lazzaro, D., Price, M., De Felice, M. & Di Lauro, R. The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development 113, 1093–1104 (1991).

    Article  CAS  PubMed  Google Scholar 

  74. Minoo, P. et al. TTF-1 regulates lung epithelial morphogenesis. Dev. Biol. 172, 694–698 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Hawkins, F. et al. Prospective isolation of NKX2-1–expressing human lung progenitors derived from pluripotent stem cells. J. Clin. Invest. 127, 2277–2294 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Dekkers, J. F. et al. Long-term culture, genetic manipulation and xenotransplantation of human normal and breast cancer organoids. Nat. Protoc. 16, 1936–1965 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Han, H., Zhan, T., Guo, N., Cui, M. & Xu, Y. Cryopreservation of organoids: Strategies, innovation, and future prospects. Biotechnol. J. 19, e2300543 (2024).

    Article  PubMed  Google Scholar 

  78. Xue, W. et al. Effective cryopreservation of human brain tissue and neural organoids. Cell Rep. Methods 4, 100777 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mashouf, P., Tabibzadeh, N., Kuraoka, S., Oishi, H. & Morizane, R. Cryopreservation of human kidney organoids. Cell. Mol. Life Sci. 81, 1–23 (2024).

    Article  Google Scholar 

  80. Dekkers, J. F. et al. High-resolution 3D imaging of fixed and cleared organoids. Nat. Protoc. 14, 1756–1771 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work in M.F.M.G.’s laboratory is supported by an Academy of Medical Science Springboard Award (grant no. SBF009\1011). M.F.M.G. held a H2020 Marie Skłodowska-Curie Fellowship (grant no. 843265, AmnioticID) and received support from UCL Therapeutic Acceleration Support (TAS Call 10), the NIHR Great Ormond Street Hospital Biomedical Research Centre (NIHR GOSH BRC) and the Rosetrees Trust. G.D. is supported by an EMBO Scientific Exchange Grant (grant no. 11127). K.Y.S. is supported by a Kidney Research UK PhD Scholarship (grant no. Paed_ST_005_220221129). C.C. and G.D.’s work on this project was supported by the Italian Ministry of Health through the ‘cinque per mille’ research fund. A.L.D. is supported by the NIHR UCLH Biomedical Research Centre. A.F.P. and A.M. are supported by the European Research Council (ERC) under the European Union’s Horizon Europe research and innovation program (grant no. 101126209-3D.FETOPRINT). G.G.G. is supported by the UCL Therapeutic Acceleration Support (TAS) LifeArc Fund Rare Diseases Call (TRO award no.: 184646) and the NIHR GOSH BRC. P.D.C. is supported by the CDH-UK (grant no. 16ICH03) and the BREATH Consortium (grant no. 552269), by the National Institute for Health and Care Research (grant no. NIHR-RP-2014-04-046), H2020 (grant no. 668294, INTENS), OAK Foundation (grant no. W1095/OCAY-14-191), GOSH-CC (grant no. V5201) and NIHR GOSH BRC. Research at Great Ormond Street Hospital NHS Foundation Trust and UCL Great Ormond Street Institute of Child Health is made possible by the NIHR GOSH BRC. We are grateful to V. Karaluka, to A. Eddaoudi and the GOSICH Flow Cytometry facility, to the GOSICH Imaging facility and to UCL Genomics for the support provided. We are grateful to the patients and clinical teams who helped with collecting the AF samples: the UCL Hospital (UCLH) Fetal Medicine Unit (FMU) midwife and clinical team; the biobank staff at Ospedale Pediatrico Bambino Gesù, in particular, T. Franchin, G. Di Giovamberardino and V. Marcellini; and the King’s College Hospital staff, in particular, K. Nicolaides and the Fetal Medicine Foundation.

Author information

Authors and Affiliations

Authors

Contributions

G.C., G.G.G., M.F.M.G. and P.D.C. conceived and developed the Protocol. G.C. performed the experiments and analyzed the data with the help of G.D. and K.Y.S. G.J.Z., G.M.C. and A.M. helped with the quantifications and supported the experimental work. G.C. and M.F.M.G. wrote the manuscript with the support of A.F.P., G.G.G. and P.D.C. A.L.D., C.C., I.F., R.B., P.S., M.P. and P.D.C. helped with fluid collection and data interpretation. M.F.M.G. and P.D.C. supervised the study and secured the necessary funding.

Corresponding authors

Correspondence to Paolo De Coppi or Mattia Francesco Maria Gerli.

Ethics declarations

Competing interests

M.F.M.G., G.G.G., P.D.C. and G.C. are inventors of the patent ‘Derivation of Primary Organoids from the Fetal Fluids’ filed by UCL on 18 April 2023, with application number GB2305703.7.

Peer review

Peer review information

Nature Protocols thanks Yuanyuan Zhang and Bing Zhao for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key reference

Gerli, M. F. M. et al. Nat. Med. 30, 875–887 (2024): https://doi.org/10.1038/s41591-024-02807-z

Extended data

Extended Data Fig. 1 Antibody panel validation.

a, Immunofluorescence images of a PAX8 positive KAFO displaying dim signal for NKX2-1. b, Immunofluorescence images of CDX2 staining on SiAFO, LAFO and KAFO. c, Immunofluorescence images of CDX2 staining on control fetal tissue-derived small intestinal (FSiO), lung (FLO) and kidney (FKO) organoids. d, Immunofluorescence images of NKX2-1/PAX8 co-staining on FLO, FKO, FSiO and SiAFO. e, Example of non-specific extracellular/cytoplasmic NKX2-1 or PAX8 signal in SiAFO (SiAFO_2, SiAFO_3). All scale bars, 50 µm.

Supplementary information

Source data

Source Data Fig. 2,3,6

Data analysis and quantifications.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calà, G., D’Ariano, G., Sun, K.Y. et al. Derivation, expansion and cryopreservation of primary fetal organoids from second and third trimester human amniotic fluid cells. Nat Protoc (2025). https://doi.org/10.1038/s41596-025-01227-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-025-01227-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing