Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A universal protocol for ultrafast direct regeneration and upcycling of spent lithium-ion battery cathode materials

Abstract

The rapid acceleration of global electrification has increased demand for sustainable energy storage, making lithium-ion batteries (LIBs) essential for various applications. However, their limited lifespan presents challenges related to resource waste and environmental risks. Unlike traditional metallurgical methods, which extract key metals from spent cathodes, the direct recycling process repairs damaged materials, maximizing their residual value through effective treatments. Despite widespread interest, systematic protocols to guide interdisciplinary researchers in direct recycling studies remain scarce. Using spent LiMn2O4 as an example, this protocol outlines a general approach for direct recycling and upcycling of spent LIBs. Initially, the failure condition of the spent cathode is evaluated using X-ray diffraction and inductively coupled plasma analysis to determine appropriate recycling parameters. The resulting recycled products include regenerated LiMn2O4 and upcycled next-generation cathode materials, such as high-voltage LiNi0.5Mn1.5O4 and Co-free, Li-rich Li1.2Ni0.2Mn0.6O2. Subsequently, electron microscopy, spectroscopic techniques and electrochemical performance tests evaluate recycling effectiveness. This protocol incorporates two representative recycling methods to provide readers with a detailed procedural guide. Solid-phase regeneration forms the basis of most direct recycling technologies; thus, it requires minimal adjustments for broad applicability. Joule heating, a more emerging recycling technology, leverages rapid nonequilibrium reactions, substantially reducing processing time and introducing beneficial structural defects and elemental gradient distributions within the material. Compared to metallurgical methods, solid-phase and Joule heating-based protocols reduce recycling time to ~32 h and 5 h, respectively. Overall, this protocol provides a reliable guide for researchers, promoting sustainable LIB recycling and advancing clean energy research.

Key points

  • This protocol introduces two representative techniques to help readers easily adapt and optimize the methods for implementing a direct recycling process.

  • The success of direct recycling hinges on thorough pretreatment and addressing the challenges posed by the failure behavior of spent materials, including lithium replenishment and phase structure recovery.

  • The core of direct upcycling lies in constructing a viable direct phase evolution path between the target and initial materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A comparison of spent LIB recycling technologies at different stages of development.
Fig. 2: The overall experimental design of this protocol.
Fig. 3: Failure analysis of spent cathode materials.
Fig. 4: Structural characterization of regenerated LiMn2O4 cathode materials.
Fig. 5: Electrochemical performance of regenerated LiMn2O4 cathode materials.
Fig. 6: Structural characterization of upcycled high-voltage cathode material LiNi0.5Mn1.5O4.
Fig. 7: Electrochemical performance of upcycled high-voltage cathode material LiNi0.5Mn1.5O4.
Fig. 8: Structural characterization of upcycled Li-rich Mn-based cathode material Li1.2Ni0.2Mn0.6O2.
Fig. 9: Electrochemical performance of upcycled Li-rich Mn-based cathode material Li1.2Ni0.2Mn0.6O2.

Similar content being viewed by others

Data availability

All of the data supporting this research are available in the main text and the Supplementary Information, and original data can be obtained from the corresponding authors upon reasonable request. Source data are provided with this paper. Other data supporting the findings of this study were previously published28,35,46,48. Source data are provided with this paper.

References

  1. Fuso Nerini, F. et al. Mapping synergies and trade-offs between energy and the Sustainable Development Goals. Nat. Energy 3, 10–15 (2018).

    Article  Google Scholar 

  2. Soergel, B. et al. A sustainable development pathway for climate action within the UN 2030 agenda. Nat. Clim. Change 11, 656–664 (2021).

    Article  Google Scholar 

  3. Li, M., Lu, J., Chen, Z. & Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 30, 1800561 (2018).

    Article  Google Scholar 

  4. Yang, X., Liu, T. & Wang, C. Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles. Nat. Energy 6, 176–185 (2021).

    Article  CAS  Google Scholar 

  5. Huang, Y. & Li, J. Key challenges for grid-scale lithium-ion battery energy storage. Adv. Energy Mater. 12, 2202197 (2022).

    Article  CAS  Google Scholar 

  6. Lu, D. et al. Ligand-channel-enabled ultrafast Li-ion conduction. Nature 627, 101–107 (2024).

    Article  CAS  PubMed  Google Scholar 

  7. Ji, H., Wang, J., Ma, J., Cheng, H.-M. & Zhou, G. Fundamentals, status and challenges of direct recycling technologies for lithium ion batteries. Chem. Soc. Rev. 52, 8194–8244 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, J. et al. Toward direct regeneration of spent lithium-ion batteries: a next-generation recycling method. Chem. Rev. 124, 2839–2887 (2024).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, G. et al. Advances and challenges in thermal runaway modelling of lithium-ion batteries. Innovation 5, 100624 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, Z., Zhang, B. & Guan, D. Take responsibility for electronic-waste disposal. Nature 536, 23–25 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Bauer, C. et al. Charging sustainable batteries. Nat. Sustain. 5, 176–178 (2022).

    Article  Google Scholar 

  12. Gent, W. E., Busse, G. M. & House, K. Z. The predicted persistence of cobalt in lithium-ion batteries. Nat. Energy 7, 1132–1143 (2022).

    Article  CAS  Google Scholar 

  13. Sun, X., Ouyang, M. & Hao, H. Surging lithium price will not impede the electric vehicle boom. Joule 6, 1738–1742 (2022).

    Article  Google Scholar 

  14. Harper, G. et al. Recycling lithium-ion batteries from electric vehicles. Nature 575, 75–86 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Harper, G. D. J. Upcycle for enhanced performance. Nat. Sustain. 6, 725–726 (2023).

    Article  Google Scholar 

  16. Chen, W. et al. Recycling lithium-ion batteries from electric vehicles. Sci. Adv. 9, eadh5131 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tran, M. K., Rodrigues, M.-T. F., Kato, K., Babu, G. & Ajayan, P. M. Deep eutectic solvents for cathode recycling of Li-ion batteries. Nat. Energy 4, 339–345 (2019).

    Article  CAS  Google Scholar 

  18. Cao, Y. et al. A review of direct recycling methods for spent lithium-ion batteries. Energy Storage Mater. 70, 103475 (2024).

    Article  Google Scholar 

  19. Tao, Y., Rahn, C. D., Archer, L. A. & You, F. Second life and recycling: energy and environmental sustainability perspectives for high-performance lithium-ion batteries. Sci. Adv. 7, eabi7633 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ciez, R. E. & Whitacre, J. F. Examining different recycling processes for lithium-ion batteries. Nat. Sustain. 2, 148–156 (2019).

    Article  Google Scholar 

  21. Lan, Y. et al. Direct regenerating cathode materials from spent lithium-ion batteries. Adv. Sci. 11, 2304425 (2024).

    Article  CAS  Google Scholar 

  22. Frith, J. T., Lacey, M. J. & Ulissi, U. A non-academic perspective on the future of lithium-based batteries. Nat. Commun. 14, 420 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ren, H. et al. Densification of cathode/electrolyte interphase to enhance reversibility of LiCoO2 at 4.65 V. Adv. Mater. 36, 2408875 (2024).

    Article  CAS  Google Scholar 

  24. Xue, H. et al. In situ conversion of artificial proton-rich shell to inorganic maskant toward stable single-crystal Ni-rich cathode. Adv. Mater. 37, 2415860 (2025).

    Article  CAS  Google Scholar 

  25. Xu, E. et al. Stress-induced anomalous lithiation plateau of LiFeyMn1-yPO4 over high-rate discharging. Adv. Energy Mater. 15, 2404929 (2025).

    Article  CAS  Google Scholar 

  26. Zhu, X. et al. Epitaxial growth of an atom-thin layer on a LiNi0.5Mn1.5O4 cathode for stable Li-ion battery cycling. Nat. Commun. 13, 1565 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, T. et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 606, 305–312 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, J. et al. Sustainable upcycling of spent LiCoO2 to an ultra-stable battery cathode at high voltage. Nat. Sustain. 6, 797–805 (2023).

    Article  CAS  Google Scholar 

  29. Zheng, N. et al. Surface catalytic repair for the efficient regeneration of spent layered oxide cathodes. J. Am. Chem. Soc. 146, 27819–27829 (2024).

    Article  CAS  PubMed  Google Scholar 

  30. Ji, G. et al. Direct regeneration of degraded lithium-ion battery cathodes with a multifunctional organic lithium salt. Nat. Commun. 14, 584 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tang, D. et al. A multifunctional amino acid enables direct recycling of spent LiFePO4 cathode material. Adv. Mater. 36, 2309722 (2024).

    Article  CAS  Google Scholar 

  32. Jia, K. et al. Topotactic transformation of surface structure enabling direct regeneration of spent lithium-ion battery cathodes. J. Am. Chem. Soc. 145, 7288–7300 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, J. et al. Direct and green repairing of degraded LiCoO2 for reuse in lithium-ion batteries. Natl Sci. Rev. 9, nwac097 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ma, J. et al. Adaptable eutectic salt for the direct recycling of highly degraded layer cathodes. J. Am. Chem. Soc. 144, 20306–20314 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, J. et al. Direct recycling of spent cathode material at ambient conditions via spontaneous lithiation. Nat. Sustain. 7, 1283–1293 (2024).

    Article  Google Scholar 

  36. Shi, R. et al. Homogeneous repair of highly degraded Ni‐rich cathode material with spent lithium anode. Adv. Mater. 36, 2311553 (2024).

    Article  CAS  Google Scholar 

  37. Zhuang, Z. et al. Fast Li replenishment channels‐assisted recycling of degraded layered cathodes with enhanced cycling performance and thermal stability. Adv. Mater. 36, 2313144 (2024).

    Article  CAS  Google Scholar 

  38. Li, J. et al. Interfacial metal‐solvent chelation for direct regeneration of LiFePO4 cathode black mass. Adv. Mater. 37, 2414235 (2025).

    Article  CAS  Google Scholar 

  39. Chen, W. et al. Efficient and scalable direct regeneration of spent layered cathode materials via advanced oxidation. Adv. Mater. 37, 2414235 (2025).

    Google Scholar 

  40. Choi, C. H. et al. Flash-within-flash synthesis of gram-scale solid-state materials. Nat. Chem. 16, 1831–1837 (2024).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, C. et al. A general method to synthesize and sinter bulk ceramics in seconds. Science 369, 521–526 (2020).

    Article  Google Scholar 

  42. Zhu, W. et al. Ultrafast non-equilibrium synthesis of cathode materials for Li-ion batterie. Adv. Mater. 35, 2208974 (2023).

    Article  CAS  Google Scholar 

  43. Guo, Z. et al. Ultrafast non-equilibrium phase transition induced twin boundaries of spinel lithium manganate. Adv. Energy Mater. 14, 2302484 (2024).

    Article  CAS  Google Scholar 

  44. Guo, Y. et al. Atomistic observation and transient reordering of antisite Li/Fe defects toward sustainable LiFePO4. Energy Environ. Sci. 17, 7749–7761 (2024).

    Article  CAS  Google Scholar 

  45. Yin, Y. et al. Rapid, direct regeneration of spent LiCoO2 cathodes for Li-ion batteries. ACS Energy Lett. 8, 3005–3012 (2023).

    Article  CAS  Google Scholar 

  46. Ji, H. et al. Closed‐loop direct upcycling of spent Ni‐rich layered cathodes into high‐voltage cathode materials. Adv. Mater. 36, 2407029 (2024).

    Article  CAS  Google Scholar 

  47. Ji, G. et al. Sustainable upcycling of mixed spent cathodes to a high-voltage polyanionic cathode material. Nat. Commun. 15, 4086 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ma, J. et al. Subtractive transformation of cathode materials in spent Li-ion batteries to a low-cobalt 5 V-class cathode material. Nat. Commun. 15, 1046 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, S. et al. Manganese-based composite-structure cathode materials for sustainable batteries. Adv. Energy Mater. 15, 2404459 (2025).

    Article  CAS  Google Scholar 

  50. Song, J. et al. Building better full manganese-based cathode materials for next-generation lithium-ion batteries. Electrochem. Energy Rev. 6, 20 (2023).

    Article  CAS  Google Scholar 

  51. Gupta, V. et al. Scalable direct recycling of cathode black mass from spent lithium-ion batteries. Adv. Energy Mater. 13, 2203093 (2023).

    Article  CAS  Google Scholar 

  52. Tao, S. et al. Collaborative and privacy-preserving retired battery sorting for profitable direct recycling via federated machine learning. Nat. Commun. 14, 8032 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tao, S. et al. Generative learning assisted state-of-health estimation for sustainable battery recycling with random retirement conditions. Nat. Commun. 15, 10154 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen, Z. et al. Reaction-passivation mechanism driven materials separation for recycling of spent lithium-ion batteries. Nat. Commun. 14, 4649 (2023).

    Google Scholar 

  55. Ji, H. et al. Surface engineering suppresses the failure of biphasic sodium layered cathode for high performance sodium‐ion batteries. Adv. Funct. Mater. 32, 2109319 (2022).

    Article  CAS  Google Scholar 

  56. Zhang, Y. et al. Operando characterization and regulation of metal dissolution and redeposition dynamics near battery electrode surface. Nat. Nanotechnol. 19, 790–797 (2023).

    Article  Google Scholar 

  57. Zeng, W. et al. Entropy-increased LiMn2O4-based positive electrodes for fast-charging lithium metal batteries. Nat. Commun. 15, 7371 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu, T. et al. Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery. Nat. Commun. 10, 4721 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tan, Y. et al. Overlithiation-driven structural regulation of lithium nickel manganese oxide for high-performance battery cathode. Energy Storage Mater. 63, 102962 (2023).

    Article  Google Scholar 

  60. Dong, Q., Hu, S. & Hu, L. Electrothermal synthesis of commodity chemicals. Nat. Chem. Eng. 1, 680–690 (2024).

    Article  Google Scholar 

  61. Wang, R. et al. Twin boundary defect engineering improves lithium-ion diffusion for fast-charging spinel cathode materials. Nat. Commun. 12, 3085 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, Y. et al. Oxygen vacancy chemistry in oxide cathodes. Chem. Soc. Rev. 53, 3302–3326 (2024).

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, X. et al. Surface nickel gradient tunes anionic redox activity to stabilize cobalt-free Li-rich cathodes. Nano Energy 128, 109973 (2024).

    Article  CAS  Google Scholar 

  64. Wang, K. et al. Unraveling the role of surficial oxygen vacancies in stabilizing Li-rich layered oxides. Adv. Energy Mater. 13, 2301216 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G.Z. was supported by the Guangdong Innovative and Entrepreneurial Research Team Program (grant no. 2021ZT09L197), Shenzhen Science and Technology Program (grant no. KQTD20210811090112002), the Interdisciplinary Research and Innovation Fund of Tsinghua Shenzhen International Graduate School and the Tsinghua Shenzhen International Graduate School-Shenzhen Pengrui Young Faculty Program of Shenzhen Pengrui Foundation (grant no. SZPR2023007). H.J. was supported by the National Natural Science Foundation of China (grant no. 524B2023). J.W. was supported by the Startup Fund for Young Faculty at Shanghai Jaio Tong University (grant no. 23×010502206) and the National Natural Science Youth Fund (grant no. 52302285).

Author information

Authors and Affiliations

Authors

Contributions

H.J., J.W., G.Z. and H.-M.C. conceived the idea and provided design guidelines. H.J. and J.W. performed the relevant experiments and data analysis with the help of X.Q., H.R., H.X., H.Z. and G.J. All authors discussed and contributed to the results. H.J. wrote the manuscript with comments and revisions from all the authors.

Corresponding authors

Correspondence to Hui-Ming Cheng or Guangmin Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Hao Luo and Min-Sik Park for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Wang, J. et al. Nat. Sustain. 7, 1283–1293 (2024): https://doi.org/10.1038/s41893-024-01412-9

Wang, J. et al. Nat. Sustain. 6, 797–805 (2023): https://doi.org/10.1038/s41893-023-01094-9

Ma, J. et al. Nat. Commun. 15, 1046 (2024): https://doi.org/10.1038/s41467-024-45091-8

Choi, C. H. et al. Nat. Chem. 16, 1831–1837 (2024): https://doi.org/10.1038/s41557-024-01598-7

Wang, C. et al. Science 369, 521–526 (2020): https://doi.org/10.1126/science.aaz7681

Supplementary information

Supplementary Information

Supplementary Figs. 1–15 and Tables 1–10.

Reporting Summary

Source data

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Source Data Fig. 8

Statistical source data.

Source Data Fig. 9

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, H., Wang, J., Qiu, X. et al. A universal protocol for ultrafast direct regeneration and upcycling of spent lithium-ion battery cathode materials. Nat Protoc (2025). https://doi.org/10.1038/s41596-025-01234-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-025-01234-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing