Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Measurement of electrochemical brain activity with fast-scan cyclic voltammetry during functional magnetic resonance imaging

Abstract

One of the challenges associated with functional magnetic resonance imaging (MRI) studies is integrating and causally linking complementary functional information, often obtained using different modalities. Achieving this integration requires synchronizing the spatiotemporal multimodal datasets without mutual interference. Here we present a protocol for integrating electrochemical measurements with functional MRI, enabling the simultaneous assessment of neurochemical dynamics and brain-wide activity. This Protocol addresses challenges such as artifact interference and hardware incompatibility by providing magnetic resonance-compatible electrode designs, synchronized data acquisition settings and detailed in vitro and in vivo procedures. Using dopamine as an example, the protocol demonstrates how to measure neurochemical signals with fast-scan cyclic voltammetry (FSCV) in a flow-cell setup or in vivo in rats during MRI scanning. These procedures are adaptable to various analytes measurable by FSCV or other electrochemical techniques, such as amperometry and aptamer-based sensing. By offering step-by-step guidance, this Protocol facilitates studies of neurovascular coupling with the neurochemical basis of large-scale brain networks in health and disease and could be adapted in clinical settings. The procedure requires expertise in MRI, FSCV and stereotaxic surgeries and can be completed in 7 days.

Key points

  • This Protocol covers the simultaneous use of fast-scan cyclic voltammetry and functional magnetic resonance imaging to measure local tissue oxygen and neurotransmitter dynamics, enabling reliable benchmarking of neurochemical signals. This in vivo approach allows a direct comparison of neurochemical and hemodynamic information across spatiotemporal scales.

  • This translational method provides an alternative to fiber photometry-based measurements of genetically encoded fluorescent biosensors, which are confined to preclinical animal studies and lack potential for use in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Procedures to ensure optimal voltammetric recording practices in a high magnetic field.
Fig. 2: Overview of the procedure.
Fig. 3: Principle behind dopamine and BOLD signals detection using FSCV–fMRI.
Fig. 4: Software modifications enabling FSCV recording of dopamine under condition of EPI-based MRI.
Fig. 5: HDCV data acquisition interface with options for adjusting parameters of FSCV recording.
Fig. 6: HDCV software interface for FSCV data analysis.
Fig. 7: The oscilloscope and color plot for ensuring quality control for FSCV recordings.
Fig. 8: Experimental results obtained using FSCV/fMRI approach in the microfluidic flow cell and anesthetized rats.

Similar content being viewed by others

Data availability

All data in this Protocol were previously published in supporting primary research article8.

Code availability

Standard AFNI codes were used for BOLD fMRI preprocessing and traditional functional activation map analysis (https://afni.nimh.nih.gov). The Python codes to obtain statistical response maps are available via GitHub at https://github.com/waltonlr/FSCV-fMRI_analysis_stats.

References

  1. Pagani, M., Gutierrez-Barragan, D., de Guzman, A. E., Xu, T. & Gozzi, A. Mapping and comparing fMRI connectivity networks across species. Commun. Biol. 6, 1238 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mandino, F. et al. Animal functional magnetic resonance imaging: trends and path toward standardization. Front. Neuroinformatics 13, 78 (2019).

    Article  Google Scholar 

  3. Hsu, L.-M. & Shih, Y.-Y. I. Neuromodulation in small animal fMRI. J. Magn. Reson. Imaging 61, 1597–1617 (2024).

    Article  PubMed  Google Scholar 

  4. Cho, S., Min, H.-K., In, M.-H. & Jo, H. J. Multivariate pattern classification on BOLD activation pattern induced by deep brain stimulation in motor, associative, and limbic brain networks. Sci. Rep. 10, 7528 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, N. & Jasanoff, A. Local and global consequences of reward-evoked striatal dopamine release. Nature 580, 239–244 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bruinsma, T. J. et al. The relationship between dopamine neurotransmitter dynamics and the blood-oxygen-level-dependent (BOLD) signal: a review of pharmacological functional. Magn. Reson. imaging Front. Neurosci. 12, 238 (2018).

    Google Scholar 

  7. Helbing, C. & Angenstein, F. Frequency-dependent electrical stimulation of fimbria-fornix preferentially affects the mesolimbic dopamine system or prefrontal cortex. Brain Stimul. 13, 753–764 (2020).

    Article  PubMed  Google Scholar 

  8. Walton, L. R. et al. Simultaneous fMRI and fast-scan cyclic voltammetry bridges evoked oxygen and neurotransmitter dynamics across spatiotemporal scales. Neuroimage 244, 118634 (2021).

    Article  PubMed  Google Scholar 

  9. Min, H.-K. et al. Dopamine release in the nonhuman primate caudate and putamen depends upon site of stimulation in the subthalamic nucleus. J. Neurosci. 36, 6022–6029 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kawagoe, K. T. & Wightman, R. M. Characterization of amperometry for in vivo measurement of dopamine dynamics in the rat brain. Talanta 41, 865–874 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Dugast, C., Suaud-Chagny, M. F. & Gonon, F. Continuous in vivo monitoring of evoked dopamine release in the rat nucleus accumbens by amperometry. Neuroscience 62, 647–654 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Venton, B. J. & Cao, Q. Fundamentals of fast-scan cyclic voltammetry for dopamine detection. Analyst 145, 1158–1168 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dauphin-Ducharme, P. et al. Electrochemical aptamer-based sensors for improved therapeutic drug monitoring and high-precision, feedback-controlled drug delivery. ACS Sens. 4, 2832–2837 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Price, J. B. et al. Clinical applications of neurochemical and electrophysiological measurements for closed-loop neurostimulation. Neurosurg. Focus 49, E6 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bennet, K. E. et al. A diamond-based electrode for detection of neurochemicals in the human brain. Front. Hum. Neurosci. 10, 102 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ekstrom, A. How and when the fMRI BOLD signal relates to underlying neural activity: the danger in dissociation. Brain Res. Rev. 62, 233–244 (2010).

    Article  PubMed  Google Scholar 

  17. Lee, T., Cai, L. X., Lelyveld, V. S., Hai, A. & Jasanoff, A. Molecular-level functional magnetic resonance imaging of dopaminergic signaling. Science 344, 533–535 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shin, H. et al. Fornix stimulation induces metabolic activity and dopaminergic response in the nucleus accumbens. Front. Neurosci. 13, 1109 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chao, T.-H. H. et al. Computing hemodynamic response functions from concurrent spectral fiber-photometry and fMRI data. Neurophotonics 9, 032205 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hillman, E. M. C. Coupling mechanism and significance of the BOLD signal: a status report. Annu. Rev. Neurosci. 37, 161–181 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Helbing, C., Brocka, M., Arboit, A., Lippert, M. T. & Angenstein, F. Chemogenetic inhibition of dopaminergic neurons reduces stimulus-induced dopamine release, thereby altering the hemodynamic response function in the prefrontal cortex. Imaging Neurosci. 2, 1–16 (2024).

    Article  Google Scholar 

  22. Katz, B. M., Walton, L. R., Houston, K. M., Cerri, D. H. & Shih, Y.-Y. I. Putative neurochemical and cell type contributions to hemodynamic activity in the rodent caudate putamen. J. Cereb. Blood Flow. Metab. 43, 481–498 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Handwerker, D. A., Ollinger, J. M. & D’Esposito, M. Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. Neuroimage 21, 1639–1651 (2004).

    Article  PubMed  Google Scholar 

  24. Lecrux, C., Bourourou, M. & Hamel, E. How reliable is cerebral blood flow to map changes in neuronal activity? Auton. Neurosci. 217, 71–79 (2019).

    Article  PubMed  Google Scholar 

  25. Cho, S. et al. Cortical layer-specific differences in stimulus selectivity revealed with high-field fMRI and single-vessel resolution optical imaging of the primary visual cortex. Neuroimage 251, 118978 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Howarth, C., Mishra, A. & Hall, C. N. More than just summed neuronal activity: how multiple cell types shape the BOLD response. Philos. Trans. R. Soc. Lond. B 376, 20190630 (2021).

    Article  Google Scholar 

  27. Zaldivar, D., Rauch, A., Logothetis, N. K. & Goense, J. Two distinct profiles of fMRI and neurophysiological activity elicited by acetylcholine in visual cortex. Proc. Natl Acad. Sci. USA 115, E12073–E12082 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cerri, D. H. et al. Distinct neurochemical influences on fMRI response polarity in the striatum. Nat. Commun. 15, 1916 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Oyarzabal, E. A. et al. Chemogenetic stimulation of tonic locus coeruleus activity strengthens the default mode network. Sci. Adv. 8, eabm9898 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Decot, H. K. et al. Coordination of brain-wide activity dynamics by dopaminergic neurons. Neuropsychopharmacology 42, 615–627 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Uhlirova, H. et al. Cell type specificity of neurovascular coupling in cerebral cortex. eLife 5, e14315 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zaldivar, D., Goense, J., Lowe, S. C., Logothetis, N. K. & Panzeri, S. Dopamine is signaled by mid-frequency oscillations and boosts output layers visual information in visual cortex. Curr. Biol. 28, 224–235.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Trujillo, P. et al. Dopamine effects on frontal cortical blood flow and motor inhibition in Parkinson’s disease. Cortex 115, 99–111 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bojesen, K. B. et al. Cerebral blood flow in striatum is increased by partial dopamine agonism in initially antipsychotic-naïve patients with psychosis. Psychol. Med. 53, 6691–6701 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Conio, B. et al. Opposite effects of dopamine and serotonin on resting-state networks: review and implications for psychiatric disorders. Mol. Psychiatry 25, 82–93 (2020).

    Article  PubMed  Google Scholar 

  36. Volkow, N. D., Fowler, J. S., Wang, G.-J., Swanson, J. M. & Telang, F. Dopamine in drug abuse and addiction: results of imaging studies and treatment implications. Arch. Neurol. 64, 1575–1579 (2007).

    Article  PubMed  Google Scholar 

  37. Cepeda, C., Murphy, K. P. S., Parent, M. & Levine, M. S. The role of dopamine in Huntington’s disease. Prog. Brain Res. 211, 235–254 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dunham, K. E. & Venton, B. J. Improving serotonin fast-scan cyclic voltammetry detection: new waveforms to reduce electrode fouling. Analyst 145, 7437–7446 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Borgus, J. R., Wang, Y., DiScenza, D. J. & Venton, B. J. Spontaneous adenosine and dopamine cotransmission in the caudate-putamen is regulated by adenosine receptors. ACS Chem. Neurosci. 12, 4371–4379 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Deal, A. L., Park, J., Weiner, J. L. & Budygin, E. A. Stress alters the effect of alcohol on catecholamine dynamics in the basolateral amygdala. Front. Behav. Neurosci. 15, 640651 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee, K. H. et al. Emerging techniques for elucidating mechanism of action of deep brain stimulation. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2011, 677–680 (2011).

    PubMed  Google Scholar 

  42. Garris, P. A. et al. Wireless transmission of fast-scan cyclic voltammetry at a carbon-fiber microelectrode: proof of principle. J. Neurosci. Methods 140, 103–115 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Johnson, D. C. et al. Electroanalytical voltammetry in flowing solutions. Anal. Chim. Acta 180, 187–250 (1986).

    Article  CAS  Google Scholar 

  44. Sinkala, E. et al. Electrode calibration with a microfluidic flow cell for fast-scan cyclic voltammetry. Lab Chip 12, 2403–2408 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rodeberg, N. T., Sandberg, S. G., Johnson, J. A., Phillips, P. E. M. & Wightman, R. M. Hitchhiker’s Guide to Voltammetry: acute and chronic electrodes for in vivo fast-scan cyclic voltammetry. ACS Chem. Neurosci. 8, 221–234 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Huffman, M. L. & Venton, B. J. Electrochemical properties of different carbon-fiber microelectrodes using fast-scan cyclic voltammetry. Electroanalysis 20, 2422–2428 (2008).

    Article  CAS  Google Scholar 

  47. Hassler, C., Boretius, T. & Stieglitz, T. Polymers for neural implants. J. Polym. Sci. B 49, 18–33 (2011).

    Article  CAS  Google Scholar 

  48. Paxinos, G. & Watson, C. The Rat Brain In Stereotaxic Coordinates (Elsevier, 2007).

  49. Bucher, E. S. et al. Flexible software platform for fast-scan cyclic voltammetry data acquisition and analysis. Anal. Chem. 85, 10344–10353 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Georgi, J. C., Stippich, C., Tronnier, V. M. & Heiland, S. Active deep brain stimulation during MRI: a feasibility study. Magn. Reson. Med. 51, 380–388 (2004).

    Article  PubMed  Google Scholar 

  51. Rezai, A. R. et al. Neurostimulation systems for deep brain stimulation: In vitro evaluation of magnetic resonance imaging-related heating at 1.5 tesla. J. Magn. Reson. Imaging 15, 241–250 (2002).

    Article  PubMed  Google Scholar 

  52. Bhavaraju, N. C., Nagaraddi, V., Chetlapalli, S. R. & Osorio, I. Electrical and thermal behavior of non-ferrous noble metal electrodes exposed to MRI fields. Magn. Reson. Imaging 20, 351–357 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Budygin, E. A., Kilpatrick, M. R., Gainetdinov, R. R. & Wightman, R. M. Correlation between behavior and extracellular dopamine levels in rat striatum: comparison of microdialysis and fast-scan cyclic voltammetry. Neurosci. Lett. 281, 9–12 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Robinson, D. L. et al. Sub-second changes in accumbal dopamine during sexual behavior in male rats. Neuroreport 12, 2549–2552 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Garris, P. A. et al. Dissociation of dopamine release in the nucleus accumbens from intracranial self-stimulation. Nature 398, 67–69 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Phillips, P. E. M., Robinson, D. L., Stuber, G. D., Carelli, R. M. & Wightman, R. M. Real-time measurements of phasic changes in extracellular dopamine concentration in freely moving rats by fast-scan cyclic voltammetry. Methods Mol. Med. 79, 443–464 (2003).

    CAS  PubMed  Google Scholar 

  57. Buxton, R. B. The physics of functional magnetic resonance imaging (fMRI). Rep. Prog. Phys. 76, 096601 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Shnitko, T. A. & Robinson, D. L. Regional variation in phasic dopamine release during alcohol and sucrose self-administration in rats. ACS Chem. Neurosci. 6, 147–154 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Bang, D. et al. Sub-second dopamine and serotonin signaling in human striatum during perceptual decision-making. Neuron 108, 999–1010.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Logothetis, N. K. The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos. Trans. R. Soc. Lond. B 357, 1003–1037 (2002).

    Article  Google Scholar 

  62. Fukuda, M., Poplawsky, A. J. & Kim, S.-G. Time-dependent spatial specificity of high-resolution fMRI: insights into mesoscopic neurovascular coupling. Philos. Trans. R. Soc. Lond. B 376, 20190623 (2021).

    Article  Google Scholar 

  63. Takmakov, P., McKinney, C. J., Carelli, R. M. & Wightman, R. M. Instrumentation for fast-scan cyclic voltammetry combined with electrophysiology for behavioral experiments in freely moving animals. Rev. Sci. Instrum. 82, 074302 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Jonckers, E., Shah, D., Hamaide, J., Verhoye, M. & Van der Linden, A. The power of using functional fMRI on small rodents to study brain pharmacology and disease. Front. Pharmacol. 6, 231 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Derksen, M. et al. Animal studies in clinical MRI scanners: A custom setup for combined fMRI and deep-brain stimulation in awake rats. J. Neurosci. Methods 360, 109240 (2021).

    Article  PubMed  Google Scholar 

  66. Xu, N. et al. Functional connectivity of the brain across rodents and humans. Front. Neurosci. 16, 816331 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lucio Boschen, S., Trevathan, J., Hara, S. A., Asp, A. & Lujan, J. L. Defining a path toward the use of fast-scan cyclic voltammetry in human studies. Front. Neurosci. 15, 728092 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Chang, S.-Y. et al. Wireless fast-scan cyclic voltammetry to monitor adenosine in patients with essential tremor during deep brain stimulation. Mayo Clin. Proc. 87, 760–765 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Shrestha, K. & Venton, B. J. Transient adenosine modulates serotonin release indirectly in the dorsal raphe nuclei. ACS Chem. Neurosci. 15, 798–807 (2024).

    Article  CAS  PubMed  Google Scholar 

  70. Hadad, M., Hadad, N. & Zestos, A. G. Carbon electrode sensor for the measurement of cortisol with fast-scan cyclic voltammetry. Biosensors 13, 626 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Alyamni, N., Abot, J. L. & Zestos, A. G. Voltammetric detection of Neuropeptide Y using a modified sawhorse waveform. Anal. Bioanal. Chem. 416, 4807–4818 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wilson, L. R., Panda, S., Schmidt, A. C. & Sombers, L. A. Selective and mechanically robust sensors for electrochemical measurements of real-time hydrogen peroxide dynamics in vivo. Anal. Chem. 90, 888–895 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Meunier, C. J. et al. Electrochemical selectivity achieved using a double voltammetric waveform and partial least squares regression: differentiating endogenous hydrogen peroxide fluctuations from shifts in pH. Anal. Chem. 90, 1767–1776 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gottschalk, A. et al. Wideband ratiometric measurement of tonic and phasic dopamine release in the striatum. Preprint at bioRxiv https://doi.org/10.1101/2024.10.17.618918 (2024).

  75. Schwerdt, H. N. et al. Long-term dopamine neurochemical monitoring in primates. Proc. Natl Acad. Sci. USA 114, 13260–13265 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Movassaghi, C. S. et al. Simultaneous serotonin and dopamine monitoring across timescales by rapid pulse voltammetry with partial least squares regression. Anal. Bioanal. Chem. 413, 6747–6767 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pronold, J. et al. Multi-scale spiking network model of human cerebral cortex. Cereb. Cortex 34, bhae409 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Vasilkovska, T. et al. Evolution of aberrant brain-wide spatiotemporal dynamics of resting-state networks in a Huntington’s disease mouse model. Clin. Transl. Med. 14, e70055 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ekhtiari, H. et al. Neuroimaging biomarkers in addiction. Preprint at medRxiv https://doi.org/10.1101/2024.09.02.24312084 (2024).

  80. Fox, M. E. & Wightman, R. M. Contrasting regulation of catecholamine neurotransmission in the behaving brain: pharmacological insights from an electrochemical perspective. Pharmacol. Rev. 69, 12–32 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shih, Y.-Y. I., Wey, H.-Y., De La Garza, B. H. & Duong, T. Q. Striatal and cortical BOLD, blood flow, blood volume, oxygen consumption, and glucose consumption changes in noxious forepaw electrical stimulation. J. Cereb. Blood Flow. Metab. 31, 832–841 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Huber, L., Uludağ, K. & Möller, H. E. Non-BOLD contrast for laminar fMRI in humans: CBF, CBV, and CMRO2. Neuroimage 197, 742–760 (2019).

    Article  PubMed  Google Scholar 

  83. Chen, J. J. & Pike, G. B. Origins of the BOLD post-stimulus undershoot. Neuroimage 46, 559–568 (2009).

    Article  PubMed  Google Scholar 

  84. Logothetis, N. K. & Pfeuffer, J. On the nature of the BOLD fMRI contrast mechanism. Magn. Reson. Imaging 22, 1517–1531 (2004).

    Article  PubMed  Google Scholar 

  85. Liu, T. T., Nalci, A. & Falahpour, M. The global signal in fMRI: nuisance or information? Neuroimage 150, 213–229 (2017).

    Article  PubMed  Google Scholar 

  86. Lee, S.-H. et al. An isotropic EPI database and analytical pipelines for rat brain resting-state fMRI. Neuroimage 243, 118541 (2021).

    Article  PubMed  Google Scholar 

  87. Gu, W. et al. A bright cyan fluorescence calcium indicator for mitochondrial calcium with minimal interference from physiological pH fluctuations. Biophys. Rep. 10, 315–327 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Zhang, Y. et al. Fast and sensitive GCaMP calcium indicators for imaging neural populations. Nature 615, 884–891 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sun, F. et al. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174, 481–496.e19 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360, eaat4422 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Feng, J. et al. A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine. Neuron 102, 745–761.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Marvin, J. S. et al. Author Correction: stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR. Nat. Methods 16, 351 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Liu, B. et al. GlutaR: a high-performance fluorescent protein-based sensor for spatiotemporal monitoring of glutamine dynamics in vivo. Angew. Chem. Int. Ed. 64, e202416608 (2025).

    Article  CAS  Google Scholar 

  94. Marvin, J. S. et al. A genetically encoded fluorescent sensor for in vivo imaging of GABA. Nat. Methods 16, 763–770 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Wan, J. et al. A genetically encoded sensor for measuring serotonin dynamics. Nat. Neurosci. 24, 746–752 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li, X. et al. Elucidating the spatiotemporal dynamics of glucose metabolism with genetically encoded fluorescent biosensors. Cell Rep. Methods 4, 100904 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lin, W., Tseng, K., Fraser, S. E., Junge, J. & White, K. L. Decoding insulin secretory granule maturation using genetically encoded ph sensors. ACS Sens. 9, 6032–6039 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Simpson, E. H. et al. Lights, fiber, action! A primer on in vivo fiber photometry. Neuron 112, 718–739 (2024).

    Article  CAS  PubMed  Google Scholar 

  99. Chao, T.-H. H. et al. Neuronal dynamics of the default mode network and anterior insular cortex: Intrinsic properties and modulation by salient stimuli. Sci. Adv. 9, eade5732 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Eleftheriou, A. et al. Simultaneous dynamic glucose-enhanced (DGE) MRI and fiber photometry measurements of glucose in the healthy mouse brain. Neuroimage 265, 119762 (2023).

    Article  CAS  PubMed  Google Scholar 

  101. Takahashi, K., Sobczak, F., Pais-Roldán, P. & Yu, X. Characterizing brain stage-dependent pupil dynamics based on lateral hypothalamic activity. Cereb. Cortex 33, 10736–10749 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Schwalm, M. et al. Cortex-wide BOLD fMRI activity reflects locally-recorded slow oscillation-associated calcium waves. eLife 6, e27602 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Zhang, W.-T., Chao, T.-H. H., Cui, G. & Shih, Y.-Y. I. Simultaneous recording of neuronal and vascular activity in the rodent brain using fiber-photometry. STAR Protoc. 3, 101497 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Amjad, U. et al. Synchronous measurements of extracellular action potentials and neurochemical activity with carbon fiber electrodes in nonhuman primates. eNeuro 11, (2024).

  105. Walton, L. R., Boustead, N. G., Carroll, S. & Wightman, R. M. Effects of glutamate receptor activation on local oxygen changes. ACS Chem. Neurosci. 8, 1598–1608 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Kristensen, E. W., Wilson, R. L. & Wightman, R. M. Dispersion in flow injection analysis measured with microvoltammetric electrodes. Anal. Chem. 58, 986–988 (1986).

    Article  CAS  Google Scholar 

  107. Roriz, P., Silva, S., Frazão, O. & Novais, S. Optical fiber temperature sensors and their biomedical applications. Sensors 20, 2113 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gage, G. J., Kipke, D. R. & Shain, W. Whole animal perfusion fixation for rodents. J. Vis. Exp. https://doi.org/10.3791/3564 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Clark, J. J. et al. Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals. Nat. Methods 7, 126–129 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Yorgason, J. T., España, R. A. & Jones, S. R. Demon voltammetry and analysis software: analysis of cocaine-induced alterations in dopamine signaling using multiple kinetic measures. J. Neurosci. Methods 202, 158–164 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mena, S., Dietsch, S., Berger, S. N., Witt, C. E. & Hashemi, P. Novel, user-friendly experimental and analysis strategies for fast voltammetry: 1. the analysis kid for FSCV. ACS Meas. Au 1, 11–19 (2021).

    Article  CAS  Google Scholar 

  112. Keithley, R. B. & Wightman, R. M. Assessing principal component regression prediction of neurochemicals detected with fast-scan cyclic voltammetry. ACS Chem. Neurosci. 2, 514–525 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institute of Mental Health (grants RF1MH117053, R01MH126518, R01MH111429 and S10MH124745 to Y.-Y.I.S. and F32MH115439 to L.R.W.), National Institute of Biomedical Imaging and Bioengineering (grant R01EB033790 to Y.-Y.I.S. and S.-H.L.), National Institute of Neurological Disorders and Stroke (grants R01NS091236 and R21NS133913 to Y.-Y.I.S.), National Institute on Alcohol Abuse and Alcoholism (grants P60AA011605 and U01AA020023 to Y.-Y.I.S. and S.H.L.), National Institute of Drug Abuse (grant R21DA057503 to Y.-Y.I.S.), National Institute of Child Health and Human Development (grant P50HD103573 to Y.-Y.I.S. and S.H.L.), National Institute of Health Office of the Director (grant S10OD026796 to Y.-Y.I.S.) and W.M. Keck Foundation (Y.-Y.I.S.).

Author information

Authors and Affiliations

Authors

Contributions

L.R.W., S.H.L., T.H.H.C., R.M.W. and Y.-Y.I.S. coauthored the original study that formed the foundation for this protocol. Conceptualization: Y.-Y.I.S. Methodology and protocol development: L.R.W. and T.A.S. Investigation and data collection: L.R.W., T.A.S., T.H.H.C. and T.Y.R.P. Data analysis: T.A.S., L.R.W. and S.H.L. Technical support: R.M.W. and M.D.V. Writing—original draft: T.A.S. and T.Y.R.P. Writing—review and editing: all authors. Funding acquisition and supervision: S.H.L. and Y.-Y.I.S.

Corresponding authors

Correspondence to Tatiana A. Shnitko or Yen-Yu Ian Shih.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Paul Min and Alex Leong for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key reference

Walton, L. R. et al. Neuroimage 244, 118634 (2021): https://doi.org/10.1016/j.neuroimage.2021.118634

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shnitko, T.A., Walton, L.R., Peng, TY.R. et al. Measurement of electrochemical brain activity with fast-scan cyclic voltammetry during functional magnetic resonance imaging. Nat Protoc (2025). https://doi.org/10.1038/s41596-025-01250-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-025-01250-9

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research