Abstract
One of the challenges associated with functional magnetic resonance imaging (MRI) studies is integrating and causally linking complementary functional information, often obtained using different modalities. Achieving this integration requires synchronizing the spatiotemporal multimodal datasets without mutual interference. Here we present a protocol for integrating electrochemical measurements with functional MRI, enabling the simultaneous assessment of neurochemical dynamics and brain-wide activity. This Protocol addresses challenges such as artifact interference and hardware incompatibility by providing magnetic resonance-compatible electrode designs, synchronized data acquisition settings and detailed in vitro and in vivo procedures. Using dopamine as an example, the protocol demonstrates how to measure neurochemical signals with fast-scan cyclic voltammetry (FSCV) in a flow-cell setup or in vivo in rats during MRI scanning. These procedures are adaptable to various analytes measurable by FSCV or other electrochemical techniques, such as amperometry and aptamer-based sensing. By offering step-by-step guidance, this Protocol facilitates studies of neurovascular coupling with the neurochemical basis of large-scale brain networks in health and disease and could be adapted in clinical settings. The procedure requires expertise in MRI, FSCV and stereotaxic surgeries and can be completed in 7 days.
Key points
-
This Protocol covers the simultaneous use of fast-scan cyclic voltammetry and functional magnetic resonance imaging to measure local tissue oxygen and neurotransmitter dynamics, enabling reliable benchmarking of neurochemical signals. This in vivo approach allows a direct comparison of neurochemical and hemodynamic information across spatiotemporal scales.
-
This translational method provides an alternative to fiber photometry-based measurements of genetically encoded fluorescent biosensors, which are confined to preclinical animal studies and lack potential for use in humans.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout








Similar content being viewed by others
Data availability
All data in this Protocol were previously published in supporting primary research article8.
Code availability
Standard AFNI codes were used for BOLD fMRI preprocessing and traditional functional activation map analysis (https://afni.nimh.nih.gov). The Python codes to obtain statistical response maps are available via GitHub at https://github.com/waltonlr/FSCV-fMRI_analysis_stats.
References
Pagani, M., Gutierrez-Barragan, D., de Guzman, A. E., Xu, T. & Gozzi, A. Mapping and comparing fMRI connectivity networks across species. Commun. Biol. 6, 1238 (2023).
Mandino, F. et al. Animal functional magnetic resonance imaging: trends and path toward standardization. Front. Neuroinformatics 13, 78 (2019).
Hsu, L.-M. & Shih, Y.-Y. I. Neuromodulation in small animal fMRI. J. Magn. Reson. Imaging 61, 1597–1617 (2024).
Cho, S., Min, H.-K., In, M.-H. & Jo, H. J. Multivariate pattern classification on BOLD activation pattern induced by deep brain stimulation in motor, associative, and limbic brain networks. Sci. Rep. 10, 7528 (2020).
Li, N. & Jasanoff, A. Local and global consequences of reward-evoked striatal dopamine release. Nature 580, 239–244 (2020).
Bruinsma, T. J. et al. The relationship between dopamine neurotransmitter dynamics and the blood-oxygen-level-dependent (BOLD) signal: a review of pharmacological functional. Magn. Reson. imaging Front. Neurosci. 12, 238 (2018).
Helbing, C. & Angenstein, F. Frequency-dependent electrical stimulation of fimbria-fornix preferentially affects the mesolimbic dopamine system or prefrontal cortex. Brain Stimul. 13, 753–764 (2020).
Walton, L. R. et al. Simultaneous fMRI and fast-scan cyclic voltammetry bridges evoked oxygen and neurotransmitter dynamics across spatiotemporal scales. Neuroimage 244, 118634 (2021).
Min, H.-K. et al. Dopamine release in the nonhuman primate caudate and putamen depends upon site of stimulation in the subthalamic nucleus. J. Neurosci. 36, 6022–6029 (2016).
Kawagoe, K. T. & Wightman, R. M. Characterization of amperometry for in vivo measurement of dopamine dynamics in the rat brain. Talanta 41, 865–874 (1994).
Dugast, C., Suaud-Chagny, M. F. & Gonon, F. Continuous in vivo monitoring of evoked dopamine release in the rat nucleus accumbens by amperometry. Neuroscience 62, 647–654 (1994).
Venton, B. J. & Cao, Q. Fundamentals of fast-scan cyclic voltammetry for dopamine detection. Analyst 145, 1158–1168 (2020).
Dauphin-Ducharme, P. et al. Electrochemical aptamer-based sensors for improved therapeutic drug monitoring and high-precision, feedback-controlled drug delivery. ACS Sens. 4, 2832–2837 (2019).
Price, J. B. et al. Clinical applications of neurochemical and electrophysiological measurements for closed-loop neurostimulation. Neurosurg. Focus 49, E6 (2020).
Bennet, K. E. et al. A diamond-based electrode for detection of neurochemicals in the human brain. Front. Hum. Neurosci. 10, 102 (2016).
Ekstrom, A. How and when the fMRI BOLD signal relates to underlying neural activity: the danger in dissociation. Brain Res. Rev. 62, 233–244 (2010).
Lee, T., Cai, L. X., Lelyveld, V. S., Hai, A. & Jasanoff, A. Molecular-level functional magnetic resonance imaging of dopaminergic signaling. Science 344, 533–535 (2014).
Shin, H. et al. Fornix stimulation induces metabolic activity and dopaminergic response in the nucleus accumbens. Front. Neurosci. 13, 1109 (2019).
Chao, T.-H. H. et al. Computing hemodynamic response functions from concurrent spectral fiber-photometry and fMRI data. Neurophotonics 9, 032205 (2022).
Hillman, E. M. C. Coupling mechanism and significance of the BOLD signal: a status report. Annu. Rev. Neurosci. 37, 161–181 (2014).
Helbing, C., Brocka, M., Arboit, A., Lippert, M. T. & Angenstein, F. Chemogenetic inhibition of dopaminergic neurons reduces stimulus-induced dopamine release, thereby altering the hemodynamic response function in the prefrontal cortex. Imaging Neurosci. 2, 1–16 (2024).
Katz, B. M., Walton, L. R., Houston, K. M., Cerri, D. H. & Shih, Y.-Y. I. Putative neurochemical and cell type contributions to hemodynamic activity in the rodent caudate putamen. J. Cereb. Blood Flow. Metab. 43, 481–498 (2023).
Handwerker, D. A., Ollinger, J. M. & D’Esposito, M. Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. Neuroimage 21, 1639–1651 (2004).
Lecrux, C., Bourourou, M. & Hamel, E. How reliable is cerebral blood flow to map changes in neuronal activity? Auton. Neurosci. 217, 71–79 (2019).
Cho, S. et al. Cortical layer-specific differences in stimulus selectivity revealed with high-field fMRI and single-vessel resolution optical imaging of the primary visual cortex. Neuroimage 251, 118978 (2022).
Howarth, C., Mishra, A. & Hall, C. N. More than just summed neuronal activity: how multiple cell types shape the BOLD response. Philos. Trans. R. Soc. Lond. B 376, 20190630 (2021).
Zaldivar, D., Rauch, A., Logothetis, N. K. & Goense, J. Two distinct profiles of fMRI and neurophysiological activity elicited by acetylcholine in visual cortex. Proc. Natl Acad. Sci. USA 115, E12073–E12082 (2018).
Cerri, D. H. et al. Distinct neurochemical influences on fMRI response polarity in the striatum. Nat. Commun. 15, 1916 (2024).
Oyarzabal, E. A. et al. Chemogenetic stimulation of tonic locus coeruleus activity strengthens the default mode network. Sci. Adv. 8, eabm9898 (2022).
Decot, H. K. et al. Coordination of brain-wide activity dynamics by dopaminergic neurons. Neuropsychopharmacology 42, 615–627 (2017).
Uhlirova, H. et al. Cell type specificity of neurovascular coupling in cerebral cortex. eLife 5, e14315 (2016).
Zaldivar, D., Goense, J., Lowe, S. C., Logothetis, N. K. & Panzeri, S. Dopamine is signaled by mid-frequency oscillations and boosts output layers visual information in visual cortex. Curr. Biol. 28, 224–235.e5 (2018).
Trujillo, P. et al. Dopamine effects on frontal cortical blood flow and motor inhibition in Parkinson’s disease. Cortex 115, 99–111 (2019).
Bojesen, K. B. et al. Cerebral blood flow in striatum is increased by partial dopamine agonism in initially antipsychotic-naïve patients with psychosis. Psychol. Med. 53, 6691–6701 (2023).
Conio, B. et al. Opposite effects of dopamine and serotonin on resting-state networks: review and implications for psychiatric disorders. Mol. Psychiatry 25, 82–93 (2020).
Volkow, N. D., Fowler, J. S., Wang, G.-J., Swanson, J. M. & Telang, F. Dopamine in drug abuse and addiction: results of imaging studies and treatment implications. Arch. Neurol. 64, 1575–1579 (2007).
Cepeda, C., Murphy, K. P. S., Parent, M. & Levine, M. S. The role of dopamine in Huntington’s disease. Prog. Brain Res. 211, 235–254 (2014).
Dunham, K. E. & Venton, B. J. Improving serotonin fast-scan cyclic voltammetry detection: new waveforms to reduce electrode fouling. Analyst 145, 7437–7446 (2020).
Borgus, J. R., Wang, Y., DiScenza, D. J. & Venton, B. J. Spontaneous adenosine and dopamine cotransmission in the caudate-putamen is regulated by adenosine receptors. ACS Chem. Neurosci. 12, 4371–4379 (2021).
Deal, A. L., Park, J., Weiner, J. L. & Budygin, E. A. Stress alters the effect of alcohol on catecholamine dynamics in the basolateral amygdala. Front. Behav. Neurosci. 15, 640651 (2021).
Lee, K. H. et al. Emerging techniques for elucidating mechanism of action of deep brain stimulation. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2011, 677–680 (2011).
Garris, P. A. et al. Wireless transmission of fast-scan cyclic voltammetry at a carbon-fiber microelectrode: proof of principle. J. Neurosci. Methods 140, 103–115 (2004).
Johnson, D. C. et al. Electroanalytical voltammetry in flowing solutions. Anal. Chim. Acta 180, 187–250 (1986).
Sinkala, E. et al. Electrode calibration with a microfluidic flow cell for fast-scan cyclic voltammetry. Lab Chip 12, 2403–2408 (2012).
Rodeberg, N. T., Sandberg, S. G., Johnson, J. A., Phillips, P. E. M. & Wightman, R. M. Hitchhiker’s Guide to Voltammetry: acute and chronic electrodes for in vivo fast-scan cyclic voltammetry. ACS Chem. Neurosci. 8, 221–234 (2017).
Huffman, M. L. & Venton, B. J. Electrochemical properties of different carbon-fiber microelectrodes using fast-scan cyclic voltammetry. Electroanalysis 20, 2422–2428 (2008).
Hassler, C., Boretius, T. & Stieglitz, T. Polymers for neural implants. J. Polym. Sci. B 49, 18–33 (2011).
Paxinos, G. & Watson, C. The Rat Brain In Stereotaxic Coordinates (Elsevier, 2007).
Bucher, E. S. et al. Flexible software platform for fast-scan cyclic voltammetry data acquisition and analysis. Anal. Chem. 85, 10344–10353 (2013).
Georgi, J. C., Stippich, C., Tronnier, V. M. & Heiland, S. Active deep brain stimulation during MRI: a feasibility study. Magn. Reson. Med. 51, 380–388 (2004).
Rezai, A. R. et al. Neurostimulation systems for deep brain stimulation: In vitro evaluation of magnetic resonance imaging-related heating at 1.5 tesla. J. Magn. Reson. Imaging 15, 241–250 (2002).
Bhavaraju, N. C., Nagaraddi, V., Chetlapalli, S. R. & Osorio, I. Electrical and thermal behavior of non-ferrous noble metal electrodes exposed to MRI fields. Magn. Reson. Imaging 20, 351–357 (2002).
Budygin, E. A., Kilpatrick, M. R., Gainetdinov, R. R. & Wightman, R. M. Correlation between behavior and extracellular dopamine levels in rat striatum: comparison of microdialysis and fast-scan cyclic voltammetry. Neurosci. Lett. 281, 9–12 (2000).
Robinson, D. L. et al. Sub-second changes in accumbal dopamine during sexual behavior in male rats. Neuroreport 12, 2549–2552 (2001).
Garris, P. A. et al. Dissociation of dopamine release in the nucleus accumbens from intracranial self-stimulation. Nature 398, 67–69 (1999).
Phillips, P. E. M., Robinson, D. L., Stuber, G. D., Carelli, R. M. & Wightman, R. M. Real-time measurements of phasic changes in extracellular dopamine concentration in freely moving rats by fast-scan cyclic voltammetry. Methods Mol. Med. 79, 443–464 (2003).
Buxton, R. B. The physics of functional magnetic resonance imaging (fMRI). Rep. Prog. Phys. 76, 096601 (2013).
Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).
Shnitko, T. A. & Robinson, D. L. Regional variation in phasic dopamine release during alcohol and sucrose self-administration in rats. ACS Chem. Neurosci. 6, 147–154 (2015).
Bang, D. et al. Sub-second dopamine and serotonin signaling in human striatum during perceptual decision-making. Neuron 108, 999–1010.e6 (2020).
Logothetis, N. K. The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos. Trans. R. Soc. Lond. B 357, 1003–1037 (2002).
Fukuda, M., Poplawsky, A. J. & Kim, S.-G. Time-dependent spatial specificity of high-resolution fMRI: insights into mesoscopic neurovascular coupling. Philos. Trans. R. Soc. Lond. B 376, 20190623 (2021).
Takmakov, P., McKinney, C. J., Carelli, R. M. & Wightman, R. M. Instrumentation for fast-scan cyclic voltammetry combined with electrophysiology for behavioral experiments in freely moving animals. Rev. Sci. Instrum. 82, 074302 (2011).
Jonckers, E., Shah, D., Hamaide, J., Verhoye, M. & Van der Linden, A. The power of using functional fMRI on small rodents to study brain pharmacology and disease. Front. Pharmacol. 6, 231 (2015).
Derksen, M. et al. Animal studies in clinical MRI scanners: A custom setup for combined fMRI and deep-brain stimulation in awake rats. J. Neurosci. Methods 360, 109240 (2021).
Xu, N. et al. Functional connectivity of the brain across rodents and humans. Front. Neurosci. 16, 816331 (2022).
Lucio Boschen, S., Trevathan, J., Hara, S. A., Asp, A. & Lujan, J. L. Defining a path toward the use of fast-scan cyclic voltammetry in human studies. Front. Neurosci. 15, 728092 (2021).
Chang, S.-Y. et al. Wireless fast-scan cyclic voltammetry to monitor adenosine in patients with essential tremor during deep brain stimulation. Mayo Clin. Proc. 87, 760–765 (2012).
Shrestha, K. & Venton, B. J. Transient adenosine modulates serotonin release indirectly in the dorsal raphe nuclei. ACS Chem. Neurosci. 15, 798–807 (2024).
Hadad, M., Hadad, N. & Zestos, A. G. Carbon electrode sensor for the measurement of cortisol with fast-scan cyclic voltammetry. Biosensors 13, 626 (2023).
Alyamni, N., Abot, J. L. & Zestos, A. G. Voltammetric detection of Neuropeptide Y using a modified sawhorse waveform. Anal. Bioanal. Chem. 416, 4807–4818 (2024).
Wilson, L. R., Panda, S., Schmidt, A. C. & Sombers, L. A. Selective and mechanically robust sensors for electrochemical measurements of real-time hydrogen peroxide dynamics in vivo. Anal. Chem. 90, 888–895 (2018).
Meunier, C. J. et al. Electrochemical selectivity achieved using a double voltammetric waveform and partial least squares regression: differentiating endogenous hydrogen peroxide fluctuations from shifts in pH. Anal. Chem. 90, 1767–1776 (2018).
Gottschalk, A. et al. Wideband ratiometric measurement of tonic and phasic dopamine release in the striatum. Preprint at bioRxiv https://doi.org/10.1101/2024.10.17.618918 (2024).
Schwerdt, H. N. et al. Long-term dopamine neurochemical monitoring in primates. Proc. Natl Acad. Sci. USA 114, 13260–13265 (2017).
Movassaghi, C. S. et al. Simultaneous serotonin and dopamine monitoring across timescales by rapid pulse voltammetry with partial least squares regression. Anal. Bioanal. Chem. 413, 6747–6767 (2021).
Pronold, J. et al. Multi-scale spiking network model of human cerebral cortex. Cereb. Cortex 34, bhae409 (2024).
Vasilkovska, T. et al. Evolution of aberrant brain-wide spatiotemporal dynamics of resting-state networks in a Huntington’s disease mouse model. Clin. Transl. Med. 14, e70055 (2024).
Ekhtiari, H. et al. Neuroimaging biomarkers in addiction. Preprint at medRxiv https://doi.org/10.1101/2024.09.02.24312084 (2024).
Fox, M. E. & Wightman, R. M. Contrasting regulation of catecholamine neurotransmission in the behaving brain: pharmacological insights from an electrochemical perspective. Pharmacol. Rev. 69, 12–32 (2017).
Shih, Y.-Y. I., Wey, H.-Y., De La Garza, B. H. & Duong, T. Q. Striatal and cortical BOLD, blood flow, blood volume, oxygen consumption, and glucose consumption changes in noxious forepaw electrical stimulation. J. Cereb. Blood Flow. Metab. 31, 832–841 (2011).
Huber, L., Uludağ, K. & Möller, H. E. Non-BOLD contrast for laminar fMRI in humans: CBF, CBV, and CMRO2. Neuroimage 197, 742–760 (2019).
Chen, J. J. & Pike, G. B. Origins of the BOLD post-stimulus undershoot. Neuroimage 46, 559–568 (2009).
Logothetis, N. K. & Pfeuffer, J. On the nature of the BOLD fMRI contrast mechanism. Magn. Reson. Imaging 22, 1517–1531 (2004).
Liu, T. T., Nalci, A. & Falahpour, M. The global signal in fMRI: nuisance or information? Neuroimage 150, 213–229 (2017).
Lee, S.-H. et al. An isotropic EPI database and analytical pipelines for rat brain resting-state fMRI. Neuroimage 243, 118541 (2021).
Gu, W. et al. A bright cyan fluorescence calcium indicator for mitochondrial calcium with minimal interference from physiological pH fluctuations. Biophys. Rep. 10, 315–327 (2024).
Zhang, Y. et al. Fast and sensitive GCaMP calcium indicators for imaging neural populations. Nature 615, 884–891 (2023).
Sun, F. et al. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174, 481–496.e19 (2018).
Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360, eaat4422 (2018).
Feng, J. et al. A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine. Neuron 102, 745–761.e8 (2019).
Marvin, J. S. et al. Author Correction: stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR. Nat. Methods 16, 351 (2019).
Liu, B. et al. GlutaR: a high-performance fluorescent protein-based sensor for spatiotemporal monitoring of glutamine dynamics in vivo. Angew. Chem. Int. Ed. 64, e202416608 (2025).
Marvin, J. S. et al. A genetically encoded fluorescent sensor for in vivo imaging of GABA. Nat. Methods 16, 763–770 (2019).
Wan, J. et al. A genetically encoded sensor for measuring serotonin dynamics. Nat. Neurosci. 24, 746–752 (2021).
Li, X. et al. Elucidating the spatiotemporal dynamics of glucose metabolism with genetically encoded fluorescent biosensors. Cell Rep. Methods 4, 100904 (2024).
Lin, W., Tseng, K., Fraser, S. E., Junge, J. & White, K. L. Decoding insulin secretory granule maturation using genetically encoded ph sensors. ACS Sens. 9, 6032–6039 (2024).
Simpson, E. H. et al. Lights, fiber, action! A primer on in vivo fiber photometry. Neuron 112, 718–739 (2024).
Chao, T.-H. H. et al. Neuronal dynamics of the default mode network and anterior insular cortex: Intrinsic properties and modulation by salient stimuli. Sci. Adv. 9, eade5732 (2023).
Eleftheriou, A. et al. Simultaneous dynamic glucose-enhanced (DGE) MRI and fiber photometry measurements of glucose in the healthy mouse brain. Neuroimage 265, 119762 (2023).
Takahashi, K., Sobczak, F., Pais-Roldán, P. & Yu, X. Characterizing brain stage-dependent pupil dynamics based on lateral hypothalamic activity. Cereb. Cortex 33, 10736–10749 (2023).
Schwalm, M. et al. Cortex-wide BOLD fMRI activity reflects locally-recorded slow oscillation-associated calcium waves. eLife 6, e27602 (2017).
Zhang, W.-T., Chao, T.-H. H., Cui, G. & Shih, Y.-Y. I. Simultaneous recording of neuronal and vascular activity in the rodent brain using fiber-photometry. STAR Protoc. 3, 101497 (2022).
Amjad, U. et al. Synchronous measurements of extracellular action potentials and neurochemical activity with carbon fiber electrodes in nonhuman primates. eNeuro 11, (2024).
Walton, L. R., Boustead, N. G., Carroll, S. & Wightman, R. M. Effects of glutamate receptor activation on local oxygen changes. ACS Chem. Neurosci. 8, 1598–1608 (2017).
Kristensen, E. W., Wilson, R. L. & Wightman, R. M. Dispersion in flow injection analysis measured with microvoltammetric electrodes. Anal. Chem. 58, 986–988 (1986).
Roriz, P., Silva, S., Frazão, O. & Novais, S. Optical fiber temperature sensors and their biomedical applications. Sensors 20, 2113 (2020).
Gage, G. J., Kipke, D. R. & Shain, W. Whole animal perfusion fixation for rodents. J. Vis. Exp. https://doi.org/10.3791/3564 (2012).
Clark, J. J. et al. Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals. Nat. Methods 7, 126–129 (2010).
Yorgason, J. T., España, R. A. & Jones, S. R. Demon voltammetry and analysis software: analysis of cocaine-induced alterations in dopamine signaling using multiple kinetic measures. J. Neurosci. Methods 202, 158–164 (2011).
Mena, S., Dietsch, S., Berger, S. N., Witt, C. E. & Hashemi, P. Novel, user-friendly experimental and analysis strategies for fast voltammetry: 1. the analysis kid for FSCV. ACS Meas. Au 1, 11–19 (2021).
Keithley, R. B. & Wightman, R. M. Assessing principal component regression prediction of neurochemicals detected with fast-scan cyclic voltammetry. ACS Chem. Neurosci. 2, 514–525 (2011).
Acknowledgements
This work was supported in part by the National Institute of Mental Health (grants RF1MH117053, R01MH126518, R01MH111429 and S10MH124745 to Y.-Y.I.S. and F32MH115439 to L.R.W.), National Institute of Biomedical Imaging and Bioengineering (grant R01EB033790 to Y.-Y.I.S. and S.-H.L.), National Institute of Neurological Disorders and Stroke (grants R01NS091236 and R21NS133913 to Y.-Y.I.S.), National Institute on Alcohol Abuse and Alcoholism (grants P60AA011605 and U01AA020023 to Y.-Y.I.S. and S.H.L.), National Institute of Drug Abuse (grant R21DA057503 to Y.-Y.I.S.), National Institute of Child Health and Human Development (grant P50HD103573 to Y.-Y.I.S. and S.H.L.), National Institute of Health Office of the Director (grant S10OD026796 to Y.-Y.I.S.) and W.M. Keck Foundation (Y.-Y.I.S.).
Author information
Authors and Affiliations
Contributions
L.R.W., S.H.L., T.H.H.C., R.M.W. and Y.-Y.I.S. coauthored the original study that formed the foundation for this protocol. Conceptualization: Y.-Y.I.S. Methodology and protocol development: L.R.W. and T.A.S. Investigation and data collection: L.R.W., T.A.S., T.H.H.C. and T.Y.R.P. Data analysis: T.A.S., L.R.W. and S.H.L. Technical support: R.M.W. and M.D.V. Writing—original draft: T.A.S. and T.Y.R.P. Writing—review and editing: all authors. Funding acquisition and supervision: S.H.L. and Y.-Y.I.S.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Protocols thanks Paul Min and Alex Leong for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Key reference
Walton, L. R. et al. Neuroimage 244, 118634 (2021): https://doi.org/10.1016/j.neuroimage.2021.118634
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Shnitko, T.A., Walton, L.R., Peng, TY.R. et al. Measurement of electrochemical brain activity with fast-scan cyclic voltammetry during functional magnetic resonance imaging. Nat Protoc (2025). https://doi.org/10.1038/s41596-025-01250-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41596-025-01250-9