Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Inducible CRISPR–Cas9 screening platform to interrogate non-proliferative cellular states

Abstract

CRISPR screens have revolutionized the study of diverse biological processes, particularly in cancer research. Both pooled and arrayed CRISPR screens have facilitated the identification of essential genes for cell survival and proliferation, drivers of drug resistance and synthetic lethal interactions. However, applying loss-of-function CRISPR screening to non-proliferative states remains challenging, largely because of slower editing and the poor sensitivity of identifying guide RNAs that ‘drop out’ in a population of non-dividing cells. Here, we present a detailed protocol to accomplish this, using an inducible Cas9 system that offers precise temporal control over Cas9 expression. This inducible system allows gene editing to occur only after the non-proliferative state is fully established. We describe the complete procedure for generating an inducible Cas9-expressing model and for measuring editing efficiency by using flow cytometry. In addition, we discuss how to optimize key parameters for performing successful CRISPR screens in various non-proliferative states. We describe a detailed workflow for performing a screen in senescent cells to identify senolytic targets. This protocol is accessible to researchers with experience in molecular biology techniques and can be completed in 8–12 weeks, from the generation of an inducible Cas9 cell line clone to the analysis of a CRISPR screen for hit identification. These techniques can be applied by researchers across different fields, including stem cell differentiation, immune cell development, aging and cancer research.

Key points

  • This advanced inducible Cas9 (iCas9) screening platform provides precise temporal control of genome editing, enabling the initiation of editing only after cells have entered a desired non-proliferative state.

  • It addresses key technical considerations to overcome challenges associated with previous methods, including the speed of editing in non-dividing cells, and how to optimize the signal-to-noise ratio for correct hit identification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Protocol overview.
Fig. 2: Overview of senescence and iCas9 cell line validation.
Fig. 3: Layout of the senolytic inducible CRISPR screen.
Fig. 4: Anticipated results for the inducible CRISPR–Cas9 screening platform.

Data availability

Source data for Fig. 4 have been provided as Supplementary Information. Other data supporting the paper can be found as source data with the primary papers, references4,12. All other data supporting the findings of this study are available from the corresponding author on reasonable request.

References

  1. Bock, C. et al. High-content CRISPR screening. Nat. Rev. Methods Primers 2, 9 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Johmura, Y. et al. Senolysis by glutaminolysis inhibition ameliorates various age-associated disorders. Science 371, 265–270 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Colville, A. et al. Death-seq identifies regulators of cell death and senolytic therapies. Cell Metab. 35, 1814–1829.e6 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, L. et al. cFLIP suppression and DR5 activation sensitize senescent cancer cells to senolysis. Nat. Cancer 3, 1284–1299 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. He, S. & Sharpless, N. E. Senescence in health and disease. Cell 169, 1000–1011 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. He, J. et al. Drug tolerant persister cell plasticity in cancer: a revolutionary strategy for more effective anticancer therapies. Signal Transduct. Target. Ther. 9, 209 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lindell, E., Zhong, L. & Zhang, X. Quiescent cancer cells—a potential therapeutic target to overcome tumor resistance and relapse. Int. J. Mol. Sci. 24, 3762 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, M. et al. Targeting of vulnerabilities of drug-tolerant persisters identified through functional genetics delays tumor relapse. Cell Rep. Med. 5, 101471 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, J., Chen, L., Zhang, J. & Wang, Y. Drug inducible CRISPR/Cas systems. Comput. Struct. Biotechnol. J. 17, 1171–1177 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Childs, B. G., Baker, D. J., Kirkland, J. L., Campisi, J. & van Deursen, J. M. Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep. 15, 1139–1153 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Davies, D. M., van den Handel, K., Bharadwaj, S. & Lengefeld, J. Cellular enlargement—a new hallmark of aging? Front. Cell Dev. Biol. 10, 1036602 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Casagrande Raffi, G. et al. An antibiotic that mediates immune destruction of senescent cancer cells. Proc. Natl Acad. Sci. USA 121, e2417724121 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Reimann, M., Lee, S. & Schmitt, C. A. Cellular senescence: neither irreversible nor reversible. J. Exp. Med. 221, e20232136 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Park, F., Ohashi, K., Chiu, W., Naldini, L. & Kay, M. A. Efficient lentiviral transduction of liver requires cell cycling in vivo. Nat. Genet. 24, 49–52 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Miller, D. G., Adam, M. A. & Miller, A. D. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol. Cell. Biol. 10, 4239–4242 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Laustsen, A. & Bak, R. O. Electroporation-based CRISPR/Cas9 gene editing using Cas9 protein and chemically modified sgRNAs. Methods Mol. Biol. 1961, 127–134 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Xu, C. L., Ruan, M. Z. C., Mahajan, V. B. & Tsang, S. H. Viral delivery systems for CRISPR. Viruses 11, 28 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jochems, F. et al. The Cancer SENESCopedia: a delineation of cancer cell senescence. Cell Rep. 36, 109441 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, L. et al. High-throughput functional genetic and compound screens identify targets for senescence induction in cancer. Cell Rep. 21, 773–783 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Ahler, E. et al. Doxycycline alters metabolism and proliferation of human cell lines. PLoS ONE 8, e64561 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Petinari, L., Kohn, L. K., de Carvalho, J. E. & Genari, S. C. Cytotoxicity of tamoxifen in normal and tumoral cell lines and its ability to induce cellular transformation in vitro. Cell Biol. Int. 28, 531–539 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Brinkman, E. K. & van Steensel, B. Rapid quantitative evaluation of CRISPR genome editing by TIDE and TIDER. Methods Mol. Biol. 1961, 29–44 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Conant, D. et al. Inference of CRISPR edits from Sanger trace data. CRISPR J. 5, 123–130 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Joung, J. et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat. Protoc. 12, 828–863 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Satam, H. et al. Next-generation sequencing technology: current trends and advancements. Biology 12, 997 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Abid, T. et al. Genome-wide pooled CRISPR screening in neurospheres. Nat. Protoc. 18, 2014–2031 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Doench, J. G. et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat. Biotechnol. 32, 1262–1267 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hanna, R. E. & Doench, J. G. Design and analysis of CRISPR-Cas experiments. Nat. Biotechnol. 38, 813–823 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Costa-Silva, J., Domingues, D. & Lopes, F. M. RNA-Seq differential expression analysis: an extended review and a software tool. PLoS ONE 12, e0190152 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kuijpers, L., van Veen, E., van der Pol, L. A. & Dekker, N. H. Automated cell counting for Trypan blue-stained cell cultures using machine learning. PLoS ONE 18, e0291625 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, B., Xu, Y., Wan, A. H., Wan, G. & Wang, Q. P. Integrating genome-wide CRISPR screens and in silico drug profiling for targeted antidote development. Nat. Protoc. 19, 2739–2770 (2024).

    Article  PubMed  Google Scholar 

  33. Masramon, L. et al. Genetic instability and divergence of clonal populations in colon cancer cells in vitro. J. Cell Sci. 119, 1477–1482 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Kuiken, H. J. et al. Clonal populations of a human TNBC model display significant functional heterogeneity and divergent growth dynamics in distinct contexts. Oncogene 41, 112–124 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Dias, M. H. et al. Paradoxical activation of oncogenic signaling as a cancer treatment strategy. Cancer Discov. 14, 1276–1301 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McDade, J. R., Waxmonsky, N. C., Swanson, L. E. & Fan, M. Practical considerations for using pooled lentiviral CRISPR libraries. Curr. Protoc. Mol. Biol. 115, 31.5.1–31.5.13 (2016).

    Article  PubMed  Google Scholar 

  37. Pascarella, G., Straniero, L., Frith, M. & Carninci, P. Capture-seq protocol and TE-reX pipeline guidelines for detection of recombination of repeat elements in short- and long-DNA reads libraries. STAR Protoc. 4, 102027 (2023).

    Article  CAS  PubMed Central  Google Scholar 

  38. Evers, B. et al. CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nat. Biotechnol. 34, 631–633 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Jastrzebski, K., Evers, B. & Beijersbergen, R. L. Pooled shRNA screening in mammalian cells as a functional genomic discovery platform. Methods Mol. Biol. 1470, 49–73 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Colic, M. et al. Identifying chemogenetic interactions from CRISPR screens with drugZ. Genome Med. 11, 52 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang, B. et al. Integrative analysis of pooled CRISPR genetic screens using MAGeCKFlute. Nat. Protoc. 14, 756–780 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. von Mering, C. et al. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 31, 258–261 (2003).

    Article  Google Scholar 

  44. Szklarczyk, D. et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 51, D638–D646 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Griss, J. et al. ReactomeGSA—efficient multi-omics comparative pathway analysis. Mol. Cell. Proteomics 19, 2115–2125 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jassal, B. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 48, D498–D503 (2020).

    CAS  PubMed  Google Scholar 

  48. Fabregat, A. et al. Reactome graph database: efficient access to complex pathway data. PLoS Comput. Biol. 14, e1005968 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Otten, A. B. C. & Sun, B. K. Research techniques made simple: CRISPR genetic screens. J. Invest. Dermatol. 140, 723–728.e1 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Park, B. S., Jeon, H., Chi, S. G. & Kim, T. Efficient prioritization of CRISPR screen hits by accounting for targeting efficiency of guide RNA. BMC Biol. 21, 45 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Munoz, D. M. et al. CRISPR screens provide a comprehensive assessment of cancer vulnerabilities but generate false-positive hits for highly amplified genomic regions. Cancer Discov. 6, 900–913 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Behan, F. M. et al. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature 568, 511–516 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Chan, E. M. et al. WRN helicase is a synthetic lethal target in microsatellite unstable cancers. Nature 568, 551–556 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gilad, Y. et al. A genome-scale CRISPR Cas9 dropout screen identifies synthetically lethal targets in SRC-3 inhibited cancer cells. Commun. Biol. 4, 399 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Prahallad, A. et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483, 100–103 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Jansen, R. A. et al. Small-molecule inhibition of MAP2K4 is synergistic with RAS inhibitors in KRAS-mutant cancers. Proc. Natl Acad. Sci. USA 121, e2319492121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, L., Lankhorst, L. & Bernards, R. Exploiting senescence for the treatment of cancer. Nat. Rev. Cancer 22, 340–355 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Wiecek, A. J. et al. Genomic hallmarks and therapeutic implications of G0 cell cycle arrest in cancer. Genome Biol. 24, 128 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu, K. I. et al. A chemical-inducible CRISPR-Cas9 system for rapid control of genome editing. Nat. Chem. Biol. 12, 980–987 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Chylinski, K. et al. CRISPR-Switch regulates sgRNA activity by Cre recombination for sequential editing of two loci. Nat. Commun. 10, 5454 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sun, N. et al. Development of drug-inducible CRISPR-Cas9 systems for large-scale functional screening. BMC Genomics 20, 225 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Senturk, S. et al. Rapid and tunable method to temporally control gene editing based on conditional Cas9 stabilization. Nat. Commun. 8, 14370 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Wang, Bernards and Beijersbergen laboratories for helpful discussion and insightful feedback. This work was supported by the 2024ZD0525004 from the National Health Commission of the PRC-Noncommunicable Chronic Diseases-National Science and Technology Major Project (to L.W.); 2024YFA0918403 from the National Key Research and Development Program of China (to L.W.); W2432050, W2421020 and 82372695 from the National Natural Science Foundation of China (to L.W.); 2024A04J6484 from the Guangdong Basic and Applied Basic Research Foundation (to L.W.); YTP-SYSUCC-0055 from the Young Talents Program of Sun Yat-sen University Cancer Center (to L.W.); the European Research Council as ERC-787925 (to R.B.); 19-051-ASP from the Mark Foundation (to R.B.); ASP-II grant-Bernards 2023 (to R.B.); KWF-12539 from the Dutch Cancer Society (to R.B.); LSH-TKI-LSHM20083 from Health Holland (to R.B.); and KWF lnfrastructure lnitiatives ScreeninC 12539 (to R.L.B.).

Author information

Authors and Affiliations

Authors

Contributions

G.C.R., R.L.B., R.B., H.J.K., C.L. and L.W. contributed to the conceptualization of the manuscript. All authors contributed to the evaluation, execution, writing and revision of the manuscript.

Corresponding authors

Correspondence to Rene Bernards, Roderick L. Beijersbergen or Liqin Wang.

Ethics declarations

Competing interests

R.B. and L.W. are shareholders of Oncosence. The other authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Roland Rad and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Wang, L. et al. Nat. Cancer 3, 1284–1299 (2022): https://doi.org/10.1038/s43018-022-00462-2

Casagrande Raffi, G. et al. Proc. Natl Acad. Sci. USA 121, e2417724121 (2024): https://doi.org/10.1073/pnas.2417724121

Chen, M. et al. Cell Rep. Med. 5, 101471 (2024): https://doi.org/10.1016/j.xcrm.2024.101471

Source data

Source Data Fig. 4

Images of SA β-Gal quantification (Fig. 4a, available in cited literature), unprocessed western blots (Fig. 4b), values of curve growth for iCas9 clones (Fig. 4c), unprocessed images and gating strategy for flow cytometry images (Fig. 4d), data for screen analysis (Fig. 4e,f, available as source data in cited literature), values of gene hits for senolytic screen (Fig. 4g) and senescent versus parental arm hit ranking (Fig. 4h)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casagrande Raffi, G., Kuiken, H.J., Lieftink, C. et al. Inducible CRISPR–Cas9 screening platform to interrogate non-proliferative cellular states. Nat Protoc (2025). https://doi.org/10.1038/s41596-025-01251-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-025-01251-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing