Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Fabrication and characterization of optoelectronic in-sensor computing devices

Abstract

Bioinspired in-sensor computing devices can process information at sensory terminals by leveraging physical principles, thereby reducing latency and energy consumption during computation while simultaneously enhancing the efficiency of data processing and real-time analysis. Optoelectronic devices exhibit in-sensor computing functions, such as feature enhancement and data compression, by tuning the defect states of the semiconductor channels and thereby modulating the photoresponsivity and time constants of the sensors. These functionalities are critically dependent on precise fabrication and testing protocols. Here we present a detailed procedure for fabricating and characterizing in-sensor computing devices based on nanoscale semiconductor thin films. We explain how to test such optoelectronic devices, including the testing of visual adaptation and motion perception responses. When using semiconductor materials obtained from commercial suppliers, this procedure is time efficient and results in highly reproducible device performance. Nevertheless, all device fabrication and testing steps are generalizable and can be extended to other semiconductor thin films grown using different methods. The procedure is intended for researchers experienced in cleanroom operations and microfabrication techniques and can be completed in ~14 d. The use of bioinspired optoelectronic devices enables the development of a framework for advancing in-sensor computing technologies.

Key points

  • The first section of the procedure details the fabrication of sensors with features for the control of interface defects and quality, which enable the trapping and detrapping of carriers necessary for in-sensor computation.

  • The second section of the procedure details optoelectronic characterizations of the device, including electrical characterization, optoelectronic response characterization and bioinspired in-sensor computing characterization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Functionality and application demonstration of optoelectronic in-sensor computing phototransistor array.
Fig. 2: Schematic of the fabrication process flow.
Fig. 3: The primary process for wet transfer and etching of MoS2 film.
Fig. 4: Verification of the MoS2 phototransistors.
Fig. 5: Electrical characterization of the MoS2 phototransistors.
Fig. 6: Optoelectronic property characterization of the MoS2 phototransistors.
Fig. 7: Bioinspired in-sensor computing characterization for visual adaptation.
Fig. 8: Bioinspired in-sensor computing characterization for motion perception.
Fig. 9: Transfer curves and parameter comparison of different MoS2 phototransistors.

Similar content being viewed by others

Data availability

The main data supporting this protocol are available in our previous publications4,5 and can be obtained from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Mennel, L. et al. Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62–66 (2020).

    Article  PubMed  Google Scholar 

  2. Chai, Y. In-sensor computing for machine vision. Nature 579, 32–33 (2020).

    Article  PubMed  Google Scholar 

  3. Sun, L. et al. In-sensor reservoir computing for language learning via two-dimensional memristors. Sci. Adv. 7, eabg1455 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Liao, F. et al. Bioinspired in-sensor visual adaptation for accurate perception. Nat. Electron. 5, 84–91 (2022).

    Article  Google Scholar 

  5. Chen, J. et al. Optoelectronic graded neurons for bioinspired in-sensor motion perception. Nat. Nanotechnol. 18, 882–888 (2023).

    Article  PubMed  Google Scholar 

  6. Jang, H. et al. In-sensor optoelectronic computing using electrostatically doped silicon. Nat. Electron. 5, 519–525 (2022).

    Article  Google Scholar 

  7. Zhou, F. & Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020).

    Article  Google Scholar 

  8. Wang, Z. et al. Multidimensional vision sensors for information processing. Nat. Nanotechnol. 19, 919–930 (2024).

    Article  PubMed  Google Scholar 

  9. Yang, Z. et al. A vision chip with complementary pathways for open-world sensing. Nature 629, 1027–1033 (2024).

    Article  PubMed  Google Scholar 

  10. Chai, Y. Silicon photodiodes that multiply. Nat. Electron. 5, 483–484 (2022).

    Article  Google Scholar 

  11. Pang, X. et al. Non-volatile rippled-assisted optoelectronic array for all-day motion detection and recognition. Nat. Commun. 15, 1613 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhou, F. et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 14, 776–782 (2019).

    Article  PubMed  Google Scholar 

  13. Shao, B. et al. Highly trustworthy in-sensor cryptography for image encryption and authentication. ACS Nano 17, 10291–10299 (2023).

    Article  PubMed  Google Scholar 

  14. Wang, Y. et al. Silver telluride colloidal quantum dot infrared photodetectors and image sensors. Nat. Photonics 18, 236–242 (2024).

    Article  Google Scholar 

  15. Liao, F., Zhou, F. & Chai, Y. Neuromorphic vision sensors: principle, progress and perspectives. J. Semicond. 42, 013105 (2021).

    Article  Google Scholar 

  16. Zhou, Y. et al. Computational event-driven vision sensors for in-sensor spiking neural networks. Nat. Electron. 6, 870–878 (2023).

    Article  Google Scholar 

  17. Ouyang, B. et al. Bioinspired in-sensor spectral adaptation for perceiving spectrally distinctive features. Nat. Electron. 7, 705–713 (2024).

    Article  Google Scholar 

  18. Dodda, A. et al. Active pixel sensor matrix based on monolayer MoS2 phototransistor array. Nat. Mater. 21, 1379–1387 (2022).

    Article  PubMed  Google Scholar 

  19. Liu, J. et al. A near-infrared colloidal quantum dot imager with monolithically integrated readout circuitry. Nat. Electron. 5, 443–451 (2022).

    Article  Google Scholar 

  20. Mu, G. et al. Visible to mid-wave infrared PbS/HgTe colloidal quantum dot imagers. Nat. Photonics 18, 1147–1154 (2024).

    Article  Google Scholar 

  21. Yang, Y. et al. In-sensor dynamic computing for intelligent machine vision. Nat. Electron. 7, 225–233 (2024).

    Article  Google Scholar 

  22. Jung, D. et al. Highly conductive and elastic nanomembrane for skin electronics. Science 373, 1022–1026 (2021).

    Article  PubMed  Google Scholar 

  23. Huang, P.-Y. et al. Neuro-inspired optical sensor array for high-accuracy static image recognition and dynamic trace extraction. Nat. Commun. 14, 6736 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hong, S. et al. Highly sensitive active pixel image sensor array driven by large-area bilayer MoS2 transistor circuitry. Nat. Commun. 12, 3559 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang, M. et al. Van der Waals integrated plasmonic Au array for self-powered MoS2 photodetector. Appl. Phys. Lett. 122, 253503 (2023).

    Article  Google Scholar 

  26. Zhang, Z. et al. All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat. Nanotechnol. 17, 27–32 (2022).

    Article  PubMed  Google Scholar 

  27. Zeng, G. et al. A solar-blind photodetector with ultrahigh rectification ratio and photoresponsivity based on the MoTe2/Ta:β-Ga2O3 pn junction. Mater. Today Phys. 33, 101042 (2023).

    Article  Google Scholar 

  28. Zhao, Y. et al. High‐electron‐mobility and air‐stable 2D layered PtSe2 FETs. Adv. Mater. 29, 1604230 (2017).

    Article  Google Scholar 

  29. Ng, H. K. et al. Improving carrier mobility in two-dimensional semiconductors with rippled materials. Nat. Electron. 5, 489–496 (2022).

    Article  Google Scholar 

  30. Feng, S. et al. An ultrasensitive molybdenum-based double-heterojunction phototransistor. Nat. Commun. 12, 4094 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li, L. et al. Few‐layered PtS2 phototransistor on h‐BN with high gain. Adv. Funct. Mater. 27, 1701011 (2017).

    Article  Google Scholar 

  32. Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).

    Article  PubMed  Google Scholar 

  33. Ma, S. et al. Bioinspired in-sensor multimodal fusion for enhanced spatial and spatiotemporal association. Nano Lett. 24, 7091–7099 (2024).

    Article  PubMed  Google Scholar 

  34. Cao, G. et al. 2D material based synaptic devices for neuromorphic computing. Adv. Funct. Mater. 31, 2005443 (2021).

    Article  Google Scholar 

  35. Wan, T. et al. Neuromorphic sensory computing. Sci. China Inform. Sci. 65, 1–14 (2022).

    Article  Google Scholar 

  36. Wang, T.-Y. et al. Reconfigurable optoelectronic memristor for in-sensor computing applications. Nano Energy 89, 106291 (2021).

    Article  Google Scholar 

  37. Ren, Q. et al. Optoelectronic devices for in-sensor computing. Adv. Mater. 37, 2407476 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wan, T. et al. In-sensor computing: materials, devices, and integration technologies. Adv. Mater. 35, 2203830 (2023).

    Article  Google Scholar 

  39. Wang, C.-Y. et al. Gate-tunable Van der Waals heterostructure for reconfigurable neural network vision sensor. Sci. Adv. 6, eaba6173 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kwak, D., Polyushkin, D. K. & Mueller, T. In-sensor computing using a MoS2 photodetector with programmable spectral responsivity. Nat. Commun. 14, 4264 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang, Y. et al. Synergies of electrochemical metallization and valance change in all-inorganic perovskite quantum dots for resistive switching. Adv. Mater. 30, 1800327 (2018).

    Article  Google Scholar 

  42. Li, G. et al. Flexible VO2 films for in-sensor computing with ultraviolet light. Adv. Funct. Mater. 32, 2203074 (2022).

    Article  Google Scholar 

  43. Nakamura, M. et al. Shift current photovoltaic effect in a ferroelectric charge-transfer complex. Nat. Commun. 8, 281 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yang, M.-M. et al. Bulk photovoltaic effect in monodomain BiFeO3 thin films. Appl. Phys. Lett. 110, 183902 (2017).

    Article  Google Scholar 

  45. Stanciu, C. D. et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007).

    Article  PubMed  Google Scholar 

  46. Xie, D. et al. Photoelectric visual adaptation based on 0D‐CsPbBr3‐quantum‐dots/2D‐MoS2 mixed‐dimensional heterojunction transistor. Adv. Funct. Mater. 31, 2010655 (2021).

    Article  Google Scholar 

  47. Kwon, S. M. et al. Environment‐adaptable artificial visual perception behaviors using a light‐adjustable optoelectronic neuromorphic device array. Adv. Mater. 31, 1906433 (2019).

    Article  Google Scholar 

  48. He, Z. et al. An organic transistor with light intensity-dependent active photoadaptation. Nat. Electron. 4, 522–529 (2021).

    Article  Google Scholar 

  49. Kumar, M., Park, H. & Seo, H. A single‐pixel event photoactive device for real‐time, in‐sensor spatiotemporal optical information processing. Adv. Mater. 37, 2406607 (2025).

    Article  Google Scholar 

  50. Pan, X. et al. Parallel perception of visual motion using light-tunable memory matrix. Sci. Adv. 9, eadi4083 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kireev, D. et al. Fabrication, characterization and applications of graphene electronic tattoos. Nat. Protoc. 16, 2395–2417 (2021).

    Article  PubMed  Google Scholar 

  52. Tang, J. et al. Low power flexible monolayer MoS2 integrated circuits. Nat. Commun. 14, 3633 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  53. He, X. et al. Strain engineering in monolayer WS2, MoS2, and the WS2/MoS2 heterostructure. Appl. Phys. Lett. 109, 173105 (2016).

    Article  Google Scholar 

  54. Ohta, J. Smart CMOS Image Sensors and Applications (CRC Press, 2017).

  55. Huang, J.-K. et al. High-κ perovskite membranes as insulators for two-dimensional transistors. Nature 605, 262–267 (2022).

    Article  PubMed  Google Scholar 

  56. Liu, H. et al. Controlled adhesion of ice—toward ultraclean 2D materials. Adv. Mater. 35, 2210503 (2023).

    Article  Google Scholar 

  57. Liao, F. et al. A dual‐gate MoS2 photodetector based on interface coupling effect. Small 16, 1904369 (2020).

    Article  Google Scholar 

  58. Kang, N., Paudel, H. P., Leuenberger, M. N., Tetard, L. & Khondaker, S. I. Photoluminescence quenching in single-layer MoS2 via oxygen plasma treatment. J. Phys. Chem. C. 118, 21258–21263 (2014).

    Article  Google Scholar 

  59. Chen, M. et al. Multibit data storage states formed in plasma-treated MoS2 transistors. ACS Nano 8, 4023–4032 (2014).

    Article  PubMed  Google Scholar 

  60. Nan, H. et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 8, 5738–5745 (2014).

    Article  PubMed  Google Scholar 

  61. Zhu, C.-Y. et al. Magnesium niobate as a high-κ gate dielectric for two-dimensional electronics. Nat. Electron. 7, 1137–1146 (2024).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (grant no. 62425405), MOST National Key Technologies R&D Programme (grant no. SQ2022YFA1200118-04), Research Grant Council of Hong Kong (grant no. CRS_PolyU502/22) and The Hong Kong Polytechnic University (WZ4X and CD9J).

Author information

Authors and Affiliations

Authors

Contributions

Y.C. conceived the idea. G.Z., S.M. and H.C. developed the protocol and performed the fabrication and testing. G.Z., S.M., T.W. and J.C. compiled the experimental data. G.Z., T.W. and H.C. designed video supplements. G.Z. and Y.C. cowrote the manuscript. All the authors discussed the results and contributed to writing this manuscript.

Corresponding author

Correspondence to Yang Chai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Wenzhong Bao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Liao, F. et al. Nat. Electron. 5, 84–91 (2022): https://doi.org/10.1038/s41928-022-00713-1

Chen, J. et al. Nat. Nanotechnol. 18, 882–888 (2023): https://doi.org/10.1038/s41565-023-01379-2

Supplementary information

Supplementary Video 1

Visual aid for Step 12 of the Protocol—scratching four corners and pressing thermal release tape.

Supplementary Video 2

Visual aid for Step 14 of the Protocol—separating the sample and rinsing thermal release tape.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, G., Ma, S., Wan, T. et al. Fabrication and characterization of optoelectronic in-sensor computing devices. Nat Protoc (2025). https://doi.org/10.1038/s41596-025-01262-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-025-01262-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing