Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Genome-wide analysis of conserved and novel miRNAs in mango mesocarp reveals early regulatory networks involved in postharvest heat stress response
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 17 February 2026

Genome-wide analysis of conserved and novel miRNAs in mango mesocarp reveals early regulatory networks involved in postharvest heat stress response

  • Mitzuko Dautt-Castro1,
  • Abraham Cruz-Mendívil2,
  • Libertad Ulloa-Álvarez1,
  • Jorge A. Enríquez-Domínguez1,
  • Miranda Ávila-Sánchez1,
  • Lourdes K. Ulloa-Llanes1,
  • Sergio Casas-Flores3,
  • Tiago D. Serafim4 &
  • …
  • María A. Islas-Osuna1 

Scientific Reports , Article number:  (2026) Cite this article

  • 533 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biotechnology
  • Computational biology and bioinformatics
  • Genetics
  • Molecular biology
  • Plant sciences

Abstract

MicroRNAs (miRNAs) are key post-transcriptional regulators involved in plant development and stress responses. Although extensively studied in model species, their functional roles remain largely unexplored in non-model fruits, such as mango (Mangifera indica L.). In this study, we present, to our knowledge, the first genome-wide analysis of miRNAs in mango mesocarp under postharvest heat stress induced by hot water treatment (HWT), a widely used quarantine method. Using small RNA sequencing (sRNA-seq), we identified 90 miRNAs distributed across 27 families. Phylogenetic analysis revealed evolutionary trajectories shaped by whole-genome duplication. Most miRNAs were predicted to target transcription factors and regulators involved in growth and hormone signaling. Differential expression profiling across multiple time points post-HWT identified miR168, miR319, and miR482 as early heat-responsive miRNAs. Stem-loop and RT-qPCR validation revealed regulatory modules, including the miR168/AGO1 feedback loop and the miR319/TCP4-GAMYB axis, involved in ROS homeostasis and thermotolerance. In addition, a transient heterologous expression assay in Nicotiana benthamiana demonstrated the functional repression of MiTCP4 by miR319. Additionally, a putative interaction between miR482 and a long non-coding RNA (lncRNA) was uncovered, suggesting a potential coordination of phasiRNA generation during heat stress. These findings provide new insights into miRNA-mediated regulation in mango, highlighting both coding and non-coding networks, and lay the groundwork for future functional studies and the development of miRNA-based tools to improve thermotolerance and fruit quality.

Data availability

The datasets generated and analyzed during this study are available from accession PRJNA1310765 (Bioproject).

References

  1. Axtell, M. J. Classification and comparison of small RNAs from plants. Annu. Rev. Plant. Biol. 64, 137–159 (2013).

    Google Scholar 

  2. Matzke, M. A., Kanno, T., Matzke, A. J. M. & RNA-Directed, D. N. A. Methylation: the evolution of a complex epigenetic pathway in flowering plants. Annu. Rev. Plant. Biol. 66, 243–267 (2015).

    Google Scholar 

  3. Borges, F. & Martienssen, R. A. The expanding world of small RNAs in plants. Nat. Rev. Mol. Cell. Biol. 16, 727–741 (2015).

    Google Scholar 

  4. Yu, Y., Jia, T. & Chen, X. The ‘how’ and ‘where’ of plant MicroRNAs. New Phytol. 216, 1002–1017 (2017).

    Google Scholar 

  5. Rao, S. et al. A conserved HSF:miR169:NF-YA loop involved in tomato and Arabidopsis heat stress tolerance. Plant J. 112, 7–26 (2022).

    Google Scholar 

  6. Zhang, L. et al. Characterization and identification of grapevine heat stress-responsive MicroRNAs revealed the positive regulated function of vvi-miR167 in thermostability. Plant Sci. 329, 111623 (2023).

    Google Scholar 

  7. Li, B. et al. Sly-miR398 participates in heat stress tolerance in tomato by modulating ROS accumulation and HSP response. Agronomy 15, 294 (2025).

    Google Scholar 

  8. Zhou, R. et al. Unique MiRNAs and their targets in tomato leaf responding to combined drought and heat stress. BMC Plant. Biol. 20, 107 (2020).

    Google Scholar 

  9. Bansal, C., Balyan, S. & Mathur, S. Inferring the regulatory network of the miRNA-mediated response to individual and combined heat and drought stress in tomato. J. Plant. Biochem. Biotechnol. 30, 862–877 (2021).

    Google Scholar 

  10. Ravichandran, S., Ragupathy, R., Edwards, T., Domaratzki, M. & Cloutier, S. MicroRNA-guided regulation of heat stress response in wheat. BMC Genom. 20, 488 (2019).

    Google Scholar 

  11. USDA-APHIS. Treatment manual. 1–128. at (2016). https://www.aphis.usda.gov/sites/default/files/treatment.pdf.

  12. Dautt-Castro, M. et al. Mesocarp RNA-Seq analysis of Mango (Mangifera indica L.) identify quarantine postharvest treatment effects on gene expression. Sci. Hortic. 227, 146–153 (2018).

    Google Scholar 

  13. López-Virgen, A. G. et al. Genome-wide identification of gene families related to MiRNA biogenesis in mangifera indica L. and their possible role during heat stress. PeerJ 12, e17737 (2024).

    Google Scholar 

  14. Dai, X., Zhuang, Z. & Zhao, P. X. PsRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Res. 46, W49–W54 (2018).

    Google Scholar 

  15. Rajagopalan, R., Vaucheret, H., Trejo, J. & Bartel, D. P. A diverse and evolutionarily fluid set of MicroRNAs in Arabidopsis Thaliana. Genes Dev. 20, 3407–3425 (2006).

    Google Scholar 

  16. Wang, Y., Li, H., Sun, Q. & Yao, Y. Characterization of small RNAs derived from tRNAs, rRNAs and snornas and their response to heat stress in wheat seedlings. PLoS One. 11, e0150933 (2016).

    Google Scholar 

  17. Tang, G. Plant micrornas: an insight into their gene structures and evolution. Semin Cell. Dev. Biol. 21, 782–789 (2010).

    Google Scholar 

  18. Zhou, M. et al. Genome-wide analysis of clustering patterns and flanking characteristics for plant MicroRNA genes. FEBS J. 278, 929–940 (2011).

    Google Scholar 

  19. Li, Y., Pi, M., Gao, Q., Liu, Z. & Kang, C. Updated annotation of the wild strawberry Fragaria Vesca V4 genome. Hortic. Res. 6, 61 (2019).

    Google Scholar 

  20. Bai, S. et al. Genome-wide identification of MicroRNAs involved in the regulation of fruit ripening and climacteric stages in melon (Cucumis melo). Hortic. Res. 7, 106 (2020).

    Google Scholar 

  21. Mazurier, M. et al. Integrated sRNA-seq and RNA-seq analyses reveal a MicroRNA regulation network involved in cold response in Pisum sativum L. Genes (Basel). 13, 1119 (2022).

    Google Scholar 

  22. Cui, J., You, C. & Chen, X. The evolution of MicroRNAs in plants. Curr. Opin. Plant. Biol. 35, 61–67 (2017).

    Google Scholar 

  23. Hajieghrari, B. & Farrokhi, N. Investigation on the conserved MicroRNA genes in higher plants. Plant. Mol. Biol. Rep. 39, 10–23 (2021).

    Google Scholar 

  24. Mango Genome Consortium. The ‘Tommy atkins’ Mango genome reveals candidate genes for fruit quality. BMC Plant. Biol. 21, 1–18 (2021).

    Google Scholar 

  25. Wang, P. et al. The genome evolution and domestication of tropical fruit Mango. Genome Biol. 21, 60 (2020).

    Google Scholar 

  26. Qin, L., Xu, P. & Jiao, Y. Evolution of plant conserved MicroRNAs after Whole-Genome duplications. Genome Biol. Evol. 17, evaf045 (2025).

    Google Scholar 

  27. Zhang, W. et al. Multiple distinct small RNAs originate from the same MicroRNA precursors. Genome Biol. 11, R81 (2010).

    Google Scholar 

  28. Bologna, N. G. & Voinnet, O. The Diversity, Biogenesis, and activities of endogenous Silencing small RNAs in Arabidopsis. Annu. Rev. Plant. Biol. 65, 473–503 (2014).

    Google Scholar 

  29. Zhu, X. et al. High-Throughput Sequencing-Based identification of Arabidopsis MiRNAs induced by phytophthora capsici infection. Front. Microbiol. 11, 1094 (2020).

    Google Scholar 

  30. Zhou, R. et al. Identification of MiRNAs and their targets in wild tomato at moderately and acutely elevated temperatures by high-throughput sequencing and degradome analysis. Sci. Rep. 6, 33777 (2016).

    Google Scholar 

  31. Xu, R., Liu, C., Li, N. & Zhang, S. Global identification and expression analysis of stress-responsive genes of the argonaute family in Apple. Mol. Genet. Genomics. 291, 2015–2030 (2016).

    Google Scholar 

  32. Vaucheret, H., Mallory, A. C. & Bartel, D. P. AGO1 homeostasis entails coexpression of MIR168 and AGO1 and Preferential stabilization of miR168 by AGO1. Mol. Cell. 22, 129–136 (2006).

    Google Scholar 

  33. Mejía-Mendoza, M. A., Garcidueñas-Piña, C., Barrera-Figueroa, B. E. & Morales-Domínguez, J. F. Identification and profiling analysis of MicroRNAs in guava fruit (Psidium Guajava L.) and their role during ripening. Genes (Basel). 14, 2029 (2023).

    Google Scholar 

  34. Francischini, C. W. & Quaggio, R. B. Molecular characterization of Arabidopsis Thaliana PUF proteins – binding specificity and target candidates. FEBS J. 276, 5456–5470 (2009).

    Google Scholar 

  35. Cheng, P. et al. Genome-wide identification and analysis of TCP transcription factor genes in Rosa chinensis in response to abiotic stress and fungal diseases. Ornam. Plant. Res. 3, 1–11 (2023).

    Google Scholar 

  36. Shi, X. P. et al. MicroRNA319 family members play an important role in solanum habrochaites and S. lycopersicum responses to chilling and heat stresses. Biol. Plant. 63, 200–209 (2019).

    Google Scholar 

  37. Jia, P. et al. Cotton miR319b-Targeted TCP4-Like enhances plant defense against verticillium dahliae by activating GhICS1 transcription expression. Front. Plant. Sci. 13, 870882 (2022).

    Google Scholar 

  38. Lan, J. et al. Arabidopsis TCP4 transcription factor inhibits high temperature-induced homeotic conversion of ovules. Nat. Commun. 14, 5673 (2023).

    Google Scholar 

  39. Yin, H. et al. miR156/SPL9 regulates reactive oxygen species accumulation and immune response in Arabidopsis Thaliana. Phytopathology 109, 632–642 (2019).

    Google Scholar 

  40. Fortunato, S., Lasorella, C., Dipierro, N., Vita, F. & de Pinto, M. C. Redox signaling in plant heat stress response. Antioxidants 12, 605 (2023).

    Google Scholar 

  41. Jiao, P. et al. ZmTCP14, a TCP transcription factor, modulates drought stress response in Zea Mays L. Environ. Exp. Bot. 208, 105232 (2023).

    Google Scholar 

  42. Jones-Rhoades, M. W., Bartel, D. P. & Bartel, B. MicroRNAs and their regulatory roles in plants. Annu. Rev. Plant. Biol. 57, 19–53 (2006).

    Google Scholar 

  43. Wang, Y. et al. TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response. PLoS One. 7, e48445 (2012).

    Google Scholar 

  44. Jiang, N. et al. Tomato lncRNA23468 functions as a competing endogenous RNA to modulate NBS-LRR genes by decoying miR482b in the tomato-Phytophthora infestans interaction. Hortic. Res. 6, 28 (2019).

    Google Scholar 

  45. Ma, W. et al. Coupling of micro RNA-directed phased small interfering RNA generation from long noncoding genes with alternative splicing and alternative polyadenylation in small RNA‐mediated gene Silencing. New Phytol. 217, 1535–1550 (2018).

    Google Scholar 

  46. Várallyay, É., Válóczi, A., Ágyi, Á., Burgyán, J. & Havelda, Z. Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation. EMBO J. 29, 3507–3519 (2010).

    Google Scholar 

  47. Shivaprasad, P. V. et al. A MicroRNA superfamily regulates nucleotide binding Site–Leucine-Rich repeats and other mRNAs. Plant. Cell. 24, 859–874 (2012).

    Google Scholar 

  48. López-Gómez, R. & Gómez-Lim, M. A. A method for extracting intact RNA from fruits rich in polysaccharides using ripe Mango mesocarp. HortScience 27, 440–442 (1992).

    Google Scholar 

  49. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Google Scholar 

  50. Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).

    Google Scholar 

  51. Axtell, M. J. & ShortStack Comprehensive annotation and quantification of small RNA genes. RNA 19, 740–751 (2013).

    Google Scholar 

  52. Kozomara, A., Birgaoanu, M. & Griffiths-Jones, S. MiRBase: from MicroRNA sequences to function. Nucleic Acids Res. 47, D155–D162 (2019).

    Google Scholar 

  53. Wong, T. et al. IQ-TREE 3: Phylogenomic Inference Software using Complex Evolutionary Models. Preprint at (2025). https://doi.org/10.32942/X2P62N

  54. Letunic, I. & Bork, P. Interactive tree of life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 52, W78–W82 (2024).

    Google Scholar 

  55. Schwab, R. et al. Specific effects of MicroRNAs on the plant transcriptome. Dev. Cell. 8, 517–527 (2005).

    Google Scholar 

  56. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Google Scholar 

  57. Gotz, S. et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 36, 3420–3435 (2008).

    Google Scholar 

  58. Gruber, A. R., Lorenz, R., Bernhart, S. H., Neubock, R. & Hofacker, I. L. The Vienna RNA websuite. Nucleic Acids Res. 36, W70–W74 (2008).

    Google Scholar 

  59. Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).

    Google Scholar 

  60. Chen, C. et al. Real-time quantification of MicroRNAs by stem–loop RT–PCR. Nucleic Acids Res. 33, e179–e179 (2005).

    Google Scholar 

  61. Kramer, M. F. Stem-Loop RT‐qPCR for MiRNAs. Curr. Protoc. Mol. Biol. 95, 1–15 (2011).

    Google Scholar 

  62. Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101–1108 (2008).

    Google Scholar 

  63. Li, X. Infiltration of Nicotiana benthamiana protocol for transient expression via Agrobacterium. Bio-protocol 1, e95 (2011).

    Google Scholar 

  64. Ferdous, J., Hanafi, M. M., Rafii, M. Y. & Muhammad, K. A quick DNA extraction protocol: without liquid nitrogen in ambient temperature. Afr. J. Biotechnol. 11, 6956–6964 (2012).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Secretaría de Ciencia, Humanidades, Tecnología e Innovación (SECIHTI) through a postdoctoral fellowship to M.D-C. (CAB 2342682), master’s fellowships to L.U-A. and K.U-LL., and a fellowship to M.A-S. Thanks to SECIHTI for project CBF2023-2024-2935, awarded to M.D-C. We thank Mariana Rubio-Goycochea for her technical support. This research was supported by the Intramural Research Program of the National Institutes of Health (NIH). The contributions of the NIH author(s) are considered Works of the United States Government. The findings and conclusions presented in this paper are those of the author(s) and do not necessarily reflect the views of the NIH or the U.S. Department of Health and Human Services.

Funding

This work was funded by the project CBF2023-2024-2935 and by the postdoctoral fellowship (CAB 2342682) awarded by the Secretaría de Ciencia, Humanidades, Tecnología e Innovación (SECIHTI) to M.D-C. This research was supported in part by the Intramural Research Program of the National Institutes of Health (NIH).

Author information

Authors and Affiliations

  1. CTAOV, Centro de Investigación en Alimentación y Desarrollo, A.C., CP, 83304, A.C. Hermosillo, Sonora, México

    Mitzuko Dautt-Castro, Libertad Ulloa-Álvarez, Jorge A. Enríquez-Domínguez, Miranda Ávila-Sánchez, Lourdes K. Ulloa-Llanes & María A. Islas-Osuna

  2. Departamento de Biotecnología Agrícola, SECIHTI—Instituto Politécnico Nacional, CIIDIR Unidad Sinaloa, CP, 81101, Guasave, Sinaloa, México

    Abraham Cruz-Mendívil

  3. División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, CP, 78216, San Luis Potosí, SLP, México

    Sergio Casas-Flores

  4. Vector Molecular Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA

    Tiago D. Serafim

Authors
  1. Mitzuko Dautt-Castro
    View author publications

    Search author on:PubMed Google Scholar

  2. Abraham Cruz-Mendívil
    View author publications

    Search author on:PubMed Google Scholar

  3. Libertad Ulloa-Álvarez
    View author publications

    Search author on:PubMed Google Scholar

  4. Jorge A. Enríquez-Domínguez
    View author publications

    Search author on:PubMed Google Scholar

  5. Miranda Ávila-Sánchez
    View author publications

    Search author on:PubMed Google Scholar

  6. Lourdes K. Ulloa-Llanes
    View author publications

    Search author on:PubMed Google Scholar

  7. Sergio Casas-Flores
    View author publications

    Search author on:PubMed Google Scholar

  8. Tiago D. Serafim
    View author publications

    Search author on:PubMed Google Scholar

  9. María A. Islas-Osuna
    View author publications

    Search author on:PubMed Google Scholar

Contributions

M.D-C., L.U-A., and M.A.I-O. conceived and designed the experiments. M.D-C., L.U-A., J.A.E-D., M.A-S., and L.K.U-LL. performed the experiments. M.D-C., A.C-M., L.U-A., T.D-S., and M.A.I-O. analyzed the data. M.D-C., A.C-M., S.C-F., and M.A.I-O. wrote and edited the manuscript. All authors reviewed and approved the final version of the paper.

Corresponding authors

Correspondence to Mitzuko Dautt-Castro or María A. Islas-Osuna.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Supplementary Material 4

Supplementary Material 5

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dautt-Castro, M., Cruz-Mendívil, A., Ulloa-Álvarez, L. et al. Genome-wide analysis of conserved and novel miRNAs in mango mesocarp reveals early regulatory networks involved in postharvest heat stress response. Sci Rep (2026). https://doi.org/10.1038/s41598-026-40278-z

Download citation

  • Received: 30 August 2025

  • Accepted: 11 February 2026

  • Published: 17 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-40278-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Mangifera indica
  • Postharvest heat stress
  • sRNA-seq
  • MicroRNA
  • Long non-coding RNA
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research