Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photoinduced double hydrogen-atom transfer for polymerization and 3D printing of conductive polymer

Abstract

The photoinduced polymerization of electron-rich heteroaromatic pentacycles (ERHPs), such as thiophene derivatives and pyrrole derivatives, is challenging owing to the inherent stability of their aromatic structure. The resultant polymers are organic semiconductor materials that are widely used in both organic electronic and bioelectronic devices. Here we report an efficient hydrogen-atom transfer (HAT) photocatalyst, which is the dimerization product (1,2-bis(4-(2-hydroxyethoxy)phenyl)ethane-1,2-dione) of an acyl radical generated by the photolysis of Irgacure 2959, and its use for the dehydrogenation of coupled ERHPs formed in an acidic environment. The dehydrogenation occurs via a double HAT process, enabling the photopolymerization of ERHPs. This reaction also allows us to fabricate three-dimensional (3D) conductive pathways in hydrogels. The hydrogel can be printed to form free-standing 3D conductive structures of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate with a precision of 220 nm, markedly surpassing structures built using previous methods (>10 µm). The approach introduces opportunities for precision engineering of 3D electrodes with the possibility of expanding applications in organic electronics and bioelectronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Traditional versus our approach for 3D printing of ERHP-based conductive structures.
Fig. 2: Characterization of the photoinduced polymerization of EDOT.
Fig. 3: Atmosphere control and radical inhibitor experiments.
Fig. 4: DFT calculations.
Fig. 5: Proposed mechanism for photoinduced polymerization of PEDOT:PSS.
Fig. 6: Characterization of the photoinduced polymerization of PEDOT:PSS.
Fig. 7: Photolithography of PEDOT:PSS micro–nano structure.

Similar content being viewed by others

Data availability

All data to support the findings of this study are available within the paper and its Supplementary Information. Source data are provided with this paper.

References

  1. Anderson, C. L. et al. Exceptional electron-rich heteroaromatic pentacycle for ultralow band gap conjugated polymers and photothermal therapy. J. Am. Chem. Soc. 145, 5474–5485 (2023).

    Article  CAS  PubMed  Google Scholar 

  2. Heinze, J., Frontana-Uribe, B. A. & Ludwigs, S. Electrochemistry of conducting polymers—persistent models and new concepts. Chem. Rev. 110, 4724–4771 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Chakraborty, B. & Luscombe, C. K. Cross-dehydrogenative coupling polymerization via C–H activation for the synthesis of conjugated polymers. Angew. Chem. Int. Ed. 62, e202301247 (2023).

    Article  CAS  Google Scholar 

  4. Xie, X. et al. Liquid-in-liquid printing of 3D and mechanically tunable conductive hydrogels. Nat. Commun. 14, 4289 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yuk, H. et al. 3D printing of conducting polymers. Nat. Commun. 11, 1604 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fazekas, T. J. et al. Diversification of aliphatic C–H bonds in small molecules and polyolefins through radical chain transfer. Science 375, 545–550 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hendrich, C. M., Sekine, K., Koshikawa, T., Tanaka, K. & Hashmi, A. S. K. Homogeneous and heterogeneous gold catalysis for materials science. Chem. Rev. 121, 9113–9163 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, W. et al. Enantioselective cyanation of benzylic C–H bonds via copper-catalyzed radical relay. Science 353, 1014–1018 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cao, H., Tang, X., Tang, H., Yuan, Y. & Wu, J. Photoinduced intermolecular hydrogen atom transfer reactions in organic synthesis. Chem. Catal. 1, 523–598 (2021).

    Article  CAS  Google Scholar 

  10. Ahn, D., Stevens, L. M., Zhou, K. & Page, Z. A. Additives for ambient 3D printing with visible light. Adv. Mater. 33, 2104906 (2021).

    Article  CAS  Google Scholar 

  11. Tang, H. et al. A solution-processed n-type conducting polymer with ultrahigh conductivity. Nature 611, 271–277 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Heywang, G. & Jonas, F. Poly(alkylenedioxythiophene)s—new, very stable conducting polymers. Adv. Mater. 4, 116–118 (1992).

    Article  CAS  Google Scholar 

  13. Russ, B., Glaudell, A., Urban, J. J., Chabinyc, M. L. & Segalman, R. A. Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 1, 16050 (2016).

    Article  CAS  Google Scholar 

  14. Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Vazquez-Guardado, A., Yang, Y., Bandodkar, A. J. & Rogers, J. A. Recent advances in neurotechnologies with broad potential for neuroscience research. Nat. Neurosci. 23, 1522–1536 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, S. et al. p-Toluenesulfonic acid catalytic polymerization of EDOT without oxidants. Mater. Lett. 222, 105–108 (2018).

    Article  CAS  Google Scholar 

  17. Wang, J., Fang, B.-S., Chou, K.-Y., Chen, C.-C. & Gu, Y. A two-stage enzymatic synthesis of conductive poly(3,4-ethylenedioxythiophene). Enzyme Microb. Technol. 54, 45–50 (2014).

    Article  PubMed  Google Scholar 

  18. Yoon, H. & Jang, J. Conducting-polymer nanomaterials for high-performance sensor applications: issues and challenges. Adv. Funct. Mater. 19, 1567–1576 (2009).

    Article  CAS  Google Scholar 

  19. Zhang, L. et al. The role of mineral acid doping of PEDOT:PSS and its application in organic photovoltaics. Adv. Electron. Mater. 6, 1900648 (2020).

    Article  CAS  Google Scholar 

  20. Wu, F. et al. Conductivity enhancement of PEDOT:PSS via addition of chloroplatinic acid and its mechanism. Adv. Electron. Mater. 3, 1700047 (2017).

    Article  Google Scholar 

  21. Chen, R. et al. Sequential solution polymerization of poly(3,4-ethylenedioxythiophene) using V2O5 as oxidant for flexible touch sensors. iScience 12, 66–75 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shi, W. et al. Micron-thick highly conductive PEDOT films synthesized via self-inhibited polymerization: roles of anions. NPG Asia Mater. 9, e405 (2017).

    Article  CAS  Google Scholar 

  23. Crispin, X. et al. The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) (PEDOT-PSS) plastic electrodes. Chem. Mater. 18, 4354–4360 (2006).

    Article  CAS  Google Scholar 

  24. Mai, C. K. et al. Facile doping of anionic narrow-band-gap conjugated polyelectrolytes during dialysis. Angew. Chem. Int. Ed. 52, 12874–12878 (2013).

    Article  CAS  Google Scholar 

  25. Jalili, R., Razal, J. M., Innis, P. C. & Wallace, G. G. One-step wet-spinning process of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) fibers and the origin of higher electrical conductivity. Adv. Funct. Mater. 21, 3363–3370 (2011).

    Article  CAS  Google Scholar 

  26. Scaiano, J. C., Stamplecoskie, K. G. & Hallett-Tapley, G. L. Photochemical Norrish type I reaction as a tool for metal nanoparticle synthesis: importance of proton coupled electron transfer. Chem. Commun. 48, 4798–4808 (2012).

    Article  CAS  Google Scholar 

  27. Wilkinson, F. Transfer of triplet state energy and the chemistry of excited states. J. Phys. Chem. 66, 2569–2574 (1962).

    Article  CAS  Google Scholar 

  28. Lee, W., Jung, S., Kim, M. & Hong, S. Site-selective direct C–H pyridylation of unactivated alkanes by triplet excited anthraquinone. J. Am. Chem. Soc. 143, 3003–3012 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Zhu, Y. et al. Visible-light enabled photochemical reduction of 1,2-dicarbonyl compounds by Hünig’s base. Org. Chem. Front. 9, 1924–1931 (2022).

    Article  CAS  Google Scholar 

  30. Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Schreiner, P. R. Quantum mechanical tunneling is essential to understanding chemical reactivity. Trends Chem. 2, 980–989 (2020).

    Article  CAS  Google Scholar 

  32. Schreiner, P. R. Tunneling control of chemical reactions: the third reactivity paradigm. J. Am. Chem. Soc. 139, 15276–15283 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Meisner, J. & Kastner, J. Atom tunneling in chemistry. Angew. Chem. Int. Ed. 55, 5400–5413 (2016).

    Article  CAS  Google Scholar 

  34. Shi, G., Xu, J. & Fu, M. Raman spectroscopic and electrochemical studies on the doping level changes of polythiophene films during their electrochemical growth processes. J. Phys. Chem. B 106, 288–292 (2002).

    Article  CAS  Google Scholar 

  35. Huang, Z., Qu, L., Shi, G., Chen, F. & Hong, X. Electrochemical polymerization of naphthalene in the electrolyte of boron trifluoride diethyl etherate containing trifluoroacetic acid and polyethylene glycol oligomer. J. Electroanal. Chem. 556, 159–165 (2003).

    Article  CAS  Google Scholar 

  36. Lu, G. & Shi, G. Electrochemical polymerization of pyrene in the electrolyte of boron trifluoride diethyl etherate containing trifluoroacetic acid and polyethylene glycol oligomer. J. Electroanal. Chem. 586, 154–160 (2006).

    Article  CAS  Google Scholar 

  37. Li, C., Chen, F., Shi, G., Xu, J. & Xu, Z. Electrosynthesis of free-standing poly(para-phenylene) films in mixed electrolytes of boron trifluoride diethyl etherate and trifluoroacetic acid on stainless steel electrode. J. Appl. Polym. Sci. 83, 2462–2466 (2002).

    Article  CAS  Google Scholar 

  38. Hilal, M. & Han, J. I. Interface engineering of G-PEDOT:PSS hole transport layer via interlayer chemical functionalization for enhanced efficiency of large-area hybrid solar cells and their charge transport investigation. Sol. Energy 174, 743–756 (2018).

    Article  CAS  Google Scholar 

  39. Khan, S. & Narula, A. K. Bio-hybrid blended transparent and conductive films PEDOT:PSS:chitosan exhibiting electro-active and antibacterial properties. Eur. Polym. J. 81, 161–172 (2016).

    Article  CAS  Google Scholar 

  40. Zozoulenko, I. et al. Polarons, bipolarons, and absorption spectroscopy of PEDOT. ACS Appl. Polym. Mater. 1, 83–94 (2019).

    Article  CAS  Google Scholar 

  41. Ouyang, L., Musumeci, C., Jafari, M. J., Ederth, T. & Inganas, O. Imaging the phase separation between PEDOT and polyelectrolytes during processing of highly conductive PEDOT:PSS films. ACS Appl. Mater. Interfaces 7, 19764–19773 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Li, X. et al. Deciphering the superior thermoelectric property of post-treatment-free PEDOT:PSS/IL hybrid by X-ray and neutron scattering characterization. Npj Flex. Electron. 6, 6 (2022).

    Article  CAS  Google Scholar 

  43. Liu, Z. et al. Deciphering the quaternary structure of PEDOT:PSS aqueous dispersion with small-angle scattering. Polymer 261, 125415 (2022).

    Article  CAS  Google Scholar 

  44. Zeng, Y. et al. Increased nitrogenase activity in solar-driven biohybrids containing non-photosynthetic bacteria and conducting polymers. Angew. Chem. Int. Ed. 62, e202303877 (2023).

    Article  CAS  Google Scholar 

  45. Zhang, Z. et al. High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature 603, 624–630 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Anand, A. et al. Why organic electronic devices comprising PEDOT:PSS electrodes should be fabricated on metal free substrates. ACS Appl. Electron. Mater. 3, 929–943 (2021).

    Article  CAS  Google Scholar 

  47. Gao, B., An, J., Wang, Y., Wang, L. & Sillanpää, M. Comparative study of the photocatalytic, electrocatalytic and photoelectrocatalytic behaviour of poly(3,4-ethylenedioxythiophene). J. Electroanal. Chem. 858, 113742 (2020).

    Article  CAS  Google Scholar 

  48. Strakosas, X. et al. Metabolite-induced in vivo fabrication of substrate-free organic bioelectronics. Science 379, 795–802 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Xue, Z. et al. Assembly of complex 3D structures and electronics on curved surfaces. Sci. Adv. 8, eabm6922 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim, J., Ghaffari, R. & Kim, D.-H. The quest for miniaturized soft bioelectronic devices. Nat. Biomed. Eng. 1, 0049 (2017).

    Article  Google Scholar 

  51. Jiang, Y. et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 375, 1411–1417 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Li, J., Cao, J., Lu, B. & Gu, G. 3D-printed PEDOT:PSS for soft robotics. Nat. Rev. Mater. 8, 604–622 (2023).

    Article  Google Scholar 

  53. Hill, I. M. et al. Imparting high conductivity to 3D printed PEDOT:PSS. ACS Appl. Polym. Mater. 5, 3989–3998 (2023).

    Article  CAS  Google Scholar 

  54. Tao, Y. et al. Nanostructured electrically conductive hydrogels obtained via ultrafast laser processing and self-assembly. Nanoscale 11, 9176–9184 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Kim, S. D., Kim, K. & Shin, M. Recent advances in 3D printable conductive hydrogel inks for neural engineering. Nano Convergence 10, 41 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kern, J.-M. & Sauvage, J.-P. Photochemical deposition of electrically conducting polypyrrole. Chem. Commun. 10, 657–658 (1989).

    Article  Google Scholar 

  57. Woods, E. F. et al. Light directs monomer coordination in catalyst-free grignard photopolymerization. J. Am. Chem. Soc. 143, 18755–18765 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Wei, H. et al. Orthogonal photochemistry-assisted printing of 3D tough and stretchable conductive hydrogels. Nat. Commun. 12, 2082 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nguyen, D. M. et al. One pot photomediated formation of electrically conductive hydrogels. ACS Polym. Au 4, 34–44 (2024).

    Article  CAS  PubMed  Google Scholar 

  60. Woods, E. F., Berl, A. J. & Kalow, J. A. Advances in the synthesis of π-conjugated polymers by photopolymerization. ChemPhotoChem 5, 4–11 (2021).

    Article  CAS  Google Scholar 

  61. Argun, A. A., Cirpan, A. & Reynolds, J. R. The first truly all-polymer electrochromic devices. Adv. Mater. 15, 1338–1341 (2003).

    Article  CAS  Google Scholar 

  62. Malti, A., Gabrielsson, E. O., Crispin, X. & Berggren, M. An electrochromic bipolar membrane diode. Adv. Mater. 27, 3909–3914 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Freitag, K. et al. Screen printed reflective electrochromic displays for paper and other opaque substrates. ACS Appl. Opt. Mater. 1, 578–586 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Andersson Ersman, P. et al. Electrochromic displays screen printed on transparent nanocellulose-based substrates. Adv. Photonics Res. 4, 2200012 (2023).

    Article  CAS  Google Scholar 

  65. Gaupp, C. L., Welsh, D. M., Rauh, R. D. & Reynolds, J. R. Composite coloration efficiency measurements of electrochromic polymers based on 3,4-alkylenedioxythiophenes. Chem. Mater. 14, 3964–3970 (2002).

    Article  CAS  Google Scholar 

  66. Torgersen, J. et al. Hydrogels for two-photon polymerization: a toolbox for mimicking the extracellular matrix. Adv. Funct. Mater. 23, 4542–4554 (2013).

    Article  CAS  Google Scholar 

  67. Sun, H.-B., Takada, K., Kim, M. S., Lee, K. S. & Kawata, S. Scaling laws of voxels in two-photon photopolymerization nanofabrication. Appl. Phys. Lett. 83, 1104–1106 (2003).

    Article  CAS  Google Scholar 

  68. Frölich, A., Fischer, J., Zebrowski, T., Busch, K. & Wegener, M. Titania woodpiles with complete three-dimensional photonic bandgaps in the visible. Adv. Mater. 25, 3588–3592 (2013).

    Article  PubMed  Google Scholar 

  69. Williams, H. E., Luo, Z. & Kuebler, S. M. Effect of refractive index mismatch on multi-photon direct laser writing. Opt. Express 20, 25030–25040 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge M. Wu and X. Zheng for their assistance with C-AFM measurements. We gratefully acknowledge Z. Wang for his assistance with the OLED preparation and characterization. We thank P. Sun for his assistance with the OSC preparation and characterization. We thank X. Xiao and J. Zhao for their help with nanosecond transient absorption measurements. All theoretical calculations were performed at the High-Performance Computing Center (HPCC) of Nanjing University. We acknowledge financial support from the National Natural Science Foundation of China (numbers 52033002, 22105035, 22122103, 22101130), the Natural Science Foundation of Jiangsu Province (numbers BK20210263, BK20211560), Fundamental Research Funds for the Central Universities (numbers 020514380304, 020514380252, 020514380272); J.H. acknowledges the support from the Xiaomi Foundation.

Author information

Authors and Affiliations

Contributions

X.Z., Z.G., J.X. and J.H. conceived the work and designed the experiments. X.Z. and X.D. performed the synthesis and characterization of materials. X.Z. and H.D. conducted the 3D printing experiments. S.F. conducted experiments on the characterization of experimental mechanisms and proposed the catalytic cycle. J.H. performed the DFT calculations. Y.H. and R.C. performed cell experiments and analysed the data. The manuscript was written with contributions from all the authors.

Corresponding authors

Correspondence to Jie Han, Jin Xie or Zhongze Gu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Guoying Gu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–39, Discussion and Tables 1–3.

Reporting Summary

Supplementary Video 1

Colour transition of electrochromic device under cyclic voltage.

Supplementary Video 2

Rapid and repeatable colour switching of electrochromic device.

Supplementary Data

Cartesian coordinates of optimized geometries.

Source data

Source Data Fig. 2

Statistical Source Data

Source Data Fig. 6

Statistical Source Data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Fang, S., Hu, Y. et al. Photoinduced double hydrogen-atom transfer for polymerization and 3D printing of conductive polymer. Nat. Synth 3, 1145–1157 (2024). https://doi.org/10.1038/s44160-024-00582-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-024-00582-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing