Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Diffusion-mediated synthesis of high-quality organic–inorganic hybrid perovskite nanocrystals

An Author Correction to this article was published on 13 January 2025

This article has been updated

Abstract

Organic–inorganic hybrid perovskite nanocrystals (PNCs) (APbX3, A = formamidinium, methylammonium, X = Cl, Br, I) are semiconductor materials with important implications for fundamental research and optoelectronic applications. However, the development of hybrid PNCs lags behind their all-inorganic counterparts (CsPbX3), primarily due to their fast growth time (tens of seconds) caused by the uncontrollable kinetics of their synthesis. Here we present a diffusion-mediated synthesis approach by selecting lead precursors with desired solubility in the reaction solvent. Pb(SCN)2, which has limited solubility, serves as a lead reservoir, providing a continuous source of lead throughout the reaction process. This strategy significantly slows down the reaction kinetics. The synthesis time for hybrid PNCs can be drastically prolonged to 180 min, while maintaining the size-focusing stage. As a result, the diffusion-mediated kinetics enables the scalable synthesis of high-quality hybrid PNCs with high monodispersity and near-unity photoluminescence quantum yield. The high-quality hybrid PNCs obtained by this method will stimulate explorations into their properties and drive the development of efficient optoelectronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Growth mechanisms for hybrid lead halide PNCs.
Fig. 2: Monitoring the growth of FAPbI3 nanocrystals synthesized by conventional and diffusion-mediated approaches.
Fig. 3: Size-focusing kinetics study.
Fig. 4: Extension of the diffusion-mediated synthesis method to the colloidal synthesis of hybrid organic–inorganic FAPbX3 (X = I, Br, Cl) PNCs.
Fig. 5: Extension of the diffusion-mediated synthesis method to the colloidal synthesis of hybrid organic–inorganic MAPbX3 (X = I, Br, Cl) PNCs.
Fig. 6: Charge-carrier dynamics of FAPbI3 nanocrystal films.

Similar content being viewed by others

Data availability

All necessary data generated or analysed during this study are included in this published article, and other auxiliary data are available from the corresponding authors upon request. Source data are provided with this paper.

Change history

References

  1. Dey, A. et al. State of the art and prospects for halide perovskite nanocrystals. ACS Nano 15, 10775–10981 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kovalenko, M. V., Protesescu, L. & Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017).

    CAS  PubMed  Google Scholar 

  3. Akkerman, Q. A., Raino, G., Kovalenko, M. V. & Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018).

    CAS  PubMed  Google Scholar 

  4. Shamsi, J., Urban, A. S., Imran, M., De Trizio, L. & Manna, L. Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 119, 3296–3348 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim, Y.-H. et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photonics 15, 148–155 (2021).

    CAS  Google Scholar 

  6. Hassan, Y. et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 591, 72–77 (2021).

    CAS  PubMed  Google Scholar 

  7. Kim, J. S. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688–694 (2022).

    CAS  PubMed  Google Scholar 

  8. Song, J. et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 27, 7162–7167 (2015).

    CAS  PubMed  Google Scholar 

  9. Liu, X. K. et al. Metal halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2021).

    CAS  PubMed  Google Scholar 

  10. Chen, Q. et al. All-inorganic perovskite nanocrystal scintillators. Nature 561, 88–93 (2018).

    CAS  PubMed  Google Scholar 

  11. Zhang, Q., Shang, Q., Su, R., Do, T. T. H. & Xiong, Q. Halide perovskite semiconductor lasers: materials, cavity design, and low threshold. Nano Lett. 21, 1903–1914 (2021).

    CAS  PubMed  Google Scholar 

  12. Yakunin, S. et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 6, 8056 (2015).

    CAS  PubMed  Google Scholar 

  13. Zhang, X. et al. Ligand-assisted coupling manipulation for efficient and stable FAPbI3 colloidal quantum dot solar cells. Angew. Chem. Int. Ed. 62, e202214241 (2023).

    CAS  Google Scholar 

  14. Swarnkar, A. et al. Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).

    CAS  PubMed  Google Scholar 

  15. Yuan, J. et al. Metal halide perovskites in quantum dot solar cells: progress and prospects. Joule 4, 1160–1185 (2020).

    CAS  Google Scholar 

  16. Jia, D. et al. Tailoring solvent-mediated ligand exchange for CsPbI3 perovskite quantum dot solar cells with efficiency exceeding 16.5%. Joule 6, 1632–1653 (2022).

    CAS  Google Scholar 

  17. Yang, W. et al. Overcoming charge confinement in perovskite nanocrystal solar cells. Adv. Mater. 35, 2304533 (2023).

    CAS  Google Scholar 

  18. Jia, D., Chen, J., Zhuang, R., Hua, Y. & Zhang, X. Antisolvent-assisted in situ cation exchange of perovskite quantum dots for efficient solar cells. Adv. Mater. 35, 2212160 (2023).

    CAS  Google Scholar 

  19. Chen, B. et al. Tin dioxide buffer layer-assisted efficiency and stability of wide-bandgap inverted perovskite solar cells. J. Semicond. 43, 052201 (2022).

    CAS  Google Scholar 

  20. Nguyen, H. A. et al. Design rules for obtaining narrow luminescence from semiconductors made in solution. Chem. Rev. 123, 7890–7952 (2023).

    CAS  PubMed  Google Scholar 

  21. Li, D. et al. Enhancing performance of inverted quantum-dot light-emitting diodes based on a solution-processed hole transport layer via ligand treatment. J. Semicond. 44, 092603 (2023).

    CAS  Google Scholar 

  22. Peng, X. An essay on synthetic chemistry of colloidal nanocrystals. Nano Res. 2, 425–447 (2009).

    CAS  Google Scholar 

  23. Murray, C., Norris, D. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    CAS  Google Scholar 

  24. Park, J., Joo, J., Kwon, S. G., Jang, Y. & Hyeon, T. Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 46, 4630–4660 (2007).

    CAS  Google Scholar 

  25. Calvin, J. J., Brewer, A. S. & Alivisatos, A. P. The role of organic ligand shell structures in colloidal nanocrystal synthesis. Nat. Synth. 1, 127–137 (2022).

    CAS  Google Scholar 

  26. Kwon, S. G. & Hyeon, T. Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small 7, 2685–2702 (2011).

    CAS  PubMed  Google Scholar 

  27. Sun, C., Jiang, Y., Zhang, L., Wei, K. & Yuan, M. Toward the controlled synthesis of lead halide perovskite nanocrystals. ACS Nano 17, 17600–17609 (2023).

    CAS  PubMed  Google Scholar 

  28. Pradhan, N. Growth of lead halide perovskite nanocrystals: still in mystery. ACS Phys. Chem Au 2, 268–276 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Koolyk, M., Amgar, D., Aharon, S. & Etgar, L. Kinetics of cesium lead halide perovskite nanoparticle growth; focusing and de-focusing of size distribution. Nanoscale 8, 6403–6409 (2016).

    CAS  PubMed  Google Scholar 

  30. Das, S. & Samanta, A. Highly luminescent and phase-stable red/nir-emitting all-inorganic and hybrid perovskite nanocrystals. ACS Energy Lett. 6, 3780–3787 (2021).

    CAS  Google Scholar 

  31. Protesescu, L. et al. Dismantling the ‘red wall’ of colloidal perovskites: highly luminescent formamidinium and formamidinium–cesium lead iodide nanocrystals. ACS Nano 11, 3119–3134 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Akkerman, Q. A. et al. Controlling the nucleation and growth kinetics of lead halide perovskite quantum dots. Science 377, 1406–1412 (2022).

    CAS  PubMed  Google Scholar 

  33. Lee, J. W., Tan, S., Seok, S. I., Yang, Y. & Park, N. G. Rethinking the A cation in halide perovskites. Science 375, eabj1186 (2022).

    CAS  PubMed  Google Scholar 

  34. Quan, L. N. et al. Perovskites for next-generation optical sources. Chem. Rev. 119, 7444–7477 (2019).

    CAS  PubMed  Google Scholar 

  35. Huang, J., Yuan, Y., Shao, Y. & Yan, Y. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2, 17042 (2017).

    CAS  Google Scholar 

  36. Li, W. et al. Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nat. Rev. Mater. 2, 16099 (2017).

    Google Scholar 

  37. Yan, Y., Li, Z. & Lou, Z. Photodetector based on Ruddlesden–Popper perovskite microwires with broader band detection. J. Semicond. 44, 082201 (2023).

    CAS  Google Scholar 

  38. Liu, S. et al. Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632, 536–542 (2024).

    PubMed  Google Scholar 

  39. Aqoma, H. et al. Alkyl ammonium iodide-based ligand exchange strategy for high-efficiency organic-cation perovskite quantum dot solar cells. Nat. Energy 9, 324–332 (2024).

    CAS  Google Scholar 

  40. Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ding, S. et al. In situ bonding regulation of surface ligands for efficient and stable FAPbI3 quantum dot solar cells. Adv. Sci. 9, 2204476 (2022).

    CAS  Google Scholar 

  42. Imran, M. et al. Benzoyl halides as alternative precursors for the colloidal synthesis of lead-based halide perovskite nanocrystals. J. Am. Chem. Soc. 140, 2656–2664 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tseng, Z.-L. et al. Aggregation control, surface passivation, and optimization of device structure toward near-infrared perovskite quantum-dot light-emitting diodes with an EQE up to 15.4%. Adv. Mater. 34, 2109785 (2022).

    CAS  Google Scholar 

  44. Xue, J. et al. Surface ligand management for stable FAPbI3 perovskite quantum dot solar cells. Joule 2, 1866–1878 (2018).

    CAS  Google Scholar 

  45. Lou, Y. et al. Rod-shaped thiocyanate-induced abnormal band gap broadening in SCN doped CsPbBr3 perovskite nanocrystals. Nano Res. 11, 2715–2723 (2018).

    CAS  Google Scholar 

  46. Yang, S. et al. Thiocyanate assisted performance enhancement of formamidinium based planar perovskite solar cells through a single one-step solution process. J. Mater. Chem. A 4, 9430–9436 (2016).

    CAS  Google Scholar 

  47. Jiang, Q. et al. Pseudohalide-induced moisture tolerance in perovskite CH3NH3Pb(SCN)2I thin films. Angew. Chem. Int. Ed. 54, 7617–7620 (2015).

    CAS  Google Scholar 

  48. Maceiczyk, R. M. et al. Microfluidic reactors provide preparative and mechanistic insights into the synthesis of formamidinium lead halide perovskite nanocrystals. Chem. Mater. 29, 8433–8439 (2017).

    CAS  Google Scholar 

  49. Aldakov, D. & Reiss, P. Safer-by-design fluorescent nanocrystals: metal halide perovskites vs semiconductor quantum dots. J. Phys. Chem. C 123, 12527–12541 (2019).

    CAS  Google Scholar 

  50. Wright, A. D. et al. Intrinsic quantum confinement in formamidinium lead triiodide perovskite. Nat. Mater. 19, 1201–1206 (2020).

    CAS  PubMed  Google Scholar 

  51. Peng, L., Dutta, A., Xie, R., Yang, W. & Pradhan, N. Dot–wire–platelet–cube: step growth and structural transformations in CsPbBr3 perovskite nanocrystals. ACS Energy Lett. 3, 2014–2020 (2018).

    CAS  Google Scholar 

  52. Talapin, D. V., Rogach, A. L., Haase, M. & Weller, H. Evolution of an ensemble of nanoparticles in a colloidal solution: theoretical study. J. Phys. Chem. B 105, 12278–12285 (2001).

    CAS  Google Scholar 

  53. Yin, Y. & Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005).

    CAS  PubMed  Google Scholar 

  54. Luther, J. M. et al. Structural, optical, and electrical properties of self-assembled films of pbse nanocrystals treated with 1,2-ethanedithiol. ACS Nano 2, 271–280 (2008).

    CAS  PubMed  Google Scholar 

  55. Toso, S., Baranov, D., Giannini, C., Marras, S. & Manna, L. Wide-angle X-ray diffraction evidence of structural coherence in CsPbBr3 nanocrystal superlattices. ACS Mater. Lett. 1, 272–276 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Toso, S., Baranov, D., Filippi, U., Giannini, C. & Manna, L. Collective diffraction effects in perovskite nanocrystal superlattices. Acc. Chem. Res. 56, 66–76 (2023).

    CAS  PubMed  Google Scholar 

  57. Ohmi, T. et al. Thiocyanate-stabilized pseudo-cubic perovskite CH(NH2)2PbI3 from coincident columnar defect lattices. J. Am. Chem. Soc. 145, 19759–19767 (2023).

    CAS  PubMed  Google Scholar 

  58. Koscher, B. A., Swabeck, J. K., Bronstein, N. D. & Alivisatos, A. P. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment. J. Am. Chem. Soc. 139, 6566–6569 (2017).

    CAS  PubMed  Google Scholar 

  59. Ding, C. et al. Photoexcited hot and cold electron and hole dynamics at FAPbI3 perovskite quantum dots/metal oxide heterojunctions used for stable perovskite quantum dot solar cells. Nano Energy 67, 104267 (2020).

    CAS  Google Scholar 

  60. Xue, J. et al. A small-molecule ‘charge driver’ enables perovskite quantum dot solar cells with efficiency approaching 13%. Adv. Mater. 31, 1900111 (2019).

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (grant number 2022YFE0110300), the National Natural Science Foundation of China (grant numbers 92163114, 52372215 and 52002260), the Special Fund for the ‘Dual Carbon’ Science and Technology Innovation of Jiangsu Province (Industrial Prospect and Key Technology Research Program) (grant numbers BE2022021 and BE2022023), the Gusu Innovation and Entrepreneurship Leading Talent Program (grant number ZXL2022451) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (grant number 21KJA430004). This work is supported by Suzhou Key Laboratory of Functional Nano & Soft Materials, Collaborative Innovation Center of Suzhou Nano Science & Technology, and the 111 Project.

Author information

Authors and Affiliations

Authors

Contributions

Z.L. and W.M. conceived the idea and supervised the project. X.S. designed the experiments. X.S., L.Y., Y.Z., C.Z. and X.Z. performed the experiments and data analysis. G.S. and Q.S. conducted the PL decay measurement. G.S., Yumin Wang and Yaxing Wang measured the TA spectra. M.M. and B.S. contributed to the high-resolution STEM measurement. Y.L. and C.L. contributed to in situ PL data analysis. X.S., Z.L. and W.M. co-wrote the paper with contributions from all authors.

Corresponding authors

Correspondence to Zeke Liu or Wanli Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Tae-Woo Lee, Tao Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Materials and additional experimental methods, Supplementary Figs. 1–29, Note 1, and Tables 1–6.

Reporting Summary

Source data

Source Data Fig. 1

Raw data of in situ PL spectra of FAPbI3 nanocrystals synthesized by conventional and diffusion-mediated approaches.

Source Data Fig. 2

Unprocessed TEM images of FAPbI3 nanocrystals with different reaction times synthesized by conventional and diffusion-mediated approaches.

Source Data Fig. 3

Raw data of in situ PL spectra of FAPbI3 nanocrystals.

Source Data Fig. 3

Unprocessed TEM images of FAPbI3 nanocrystals with different reaction times.

Source Data Fig. 4

Raw data of absorption, PL, PLQY and XRD spectra of FAPbX3 (X = I, Br or Cl) nanocrystals.

Source Data Fig. 4

Unprocessed TEM images of FAPbX3 (X = I, Br or Cl) nanocrystals.

Source Data Fig. 5

Raw data of absorption, PL, PLQY and XRD spectra of MAPbX3 (X = I, Br or Cl) nanocrystals.

Source Data Fig. 5

Unprocessed TEM images of MAPbX3 (X = I, Br or Cl) nanocrystals.

Source Data Fig. 6

Raw data of TA and PL mapping spectra of FAPbI3 nanocrystals.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Yuan, L., Liu, Y. et al. Diffusion-mediated synthesis of high-quality organic–inorganic hybrid perovskite nanocrystals. Nat. Synth 4, 167–176 (2025). https://doi.org/10.1038/s44160-024-00678-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-024-00678-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing