Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Programmable synthesis of atomically precise semiconductor artificial atoms

Abstract

Precision engineering of semiconductor nanomaterials remains difficult. Here we present a programmable approach to synthesizing a library of atomically precise semiconductor nanoclusters via cation exchange. Using a universal metal–ligand coordination complex to program cations and surface ligands, and a Cu26Se13 template cluster to control the anion lattice, we synthesize a homologous series of Zn14Se13, Cd14Se13 and Hg14Se13 clusters, all featuring a pair of prominent absorption peaks. The shared A14B13 framework with icosahedral anion packing and tetrahedral cation bonding serves as a blueprint for constructing chiral semiconductor nanostructures. Theoretical calculations reveal atom-like frontier orbitals, including triply degenerate P-type orbitals for holes and singlet S-type orbitals for electrons. The doublet absorptions originate from the spin–orbit splitting of the P → S transition. The precise and programmable synthesis is expected to enable atomic-level control over the optical, electronic and spin properties of semiconductor artificial atoms and their assemblies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Programming cations in II14VI13 artificial atoms (II = Zn, Cd, Hg; VI = Se).
Fig. 2: Crystal structures of Cu26Se13(PEt2Ph)14 template cluster and product clusters [Zn14Se13(tmeda)6]2+ (1), Cd14Se13(tmeda)6I2 (2) and Hg14Se13(tmeda)6I2 (3).
Fig. 3: Programming surface ligands of II14VI13 clusters.
Fig. 4: Zincblende artificial solid assembled from chiral Cd14Se13 artificial atoms.
Fig. 5: Comparison of A14B13 cluster skeleton with zincblende and wurtzite phases of bulk semiconductors.
Fig. 6: Periodicity in optical properties of II14VI13 artificial atoms.
Fig. 7: Electronic structures of II14VI13 artificial atoms and the origin of their doublet excitonic transitions.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2345658 (1), 2345659 (2), 2345655 (3), 2345652 (4), 2345653 (5), 2345657 (6), 2345656 (7) and 2345654 (8). Copies of the data can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/. All other relevant data generated and analysed during this study, which include experimental, spectroscopic, crystallographic and computational data, are included in this article and its Supplementary Information.

References

  1. Efros, A. L. & Brus, L. E. Nanocrystal quantum dots: from discovery to modern development. ACS Nano 15, 6192–6210 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  CAS  Google Scholar 

  3. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Boles, M. A., Engel, M. & Talapin, D. V. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem. Rev. 116, 11220–11289 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Kagan, C. R., Lifshitz, E., Sargent, E. H. & Talapin, D. V. Building devices from colloidal quantum dots. Science 353, 885–892 (2016).

    Article  CAS  Google Scholar 

  6. Kagan, C. R., Bassett, L. C., Murray, C. B. & Thompson, S. M. Colloidal quantum dots as platforms for quantum information science. Chem. Rev. 121, 3186–3233 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Hanrath, T. Colloidal nanocrystal quantum dot assemblies as artificial solids. J. Vac. Sci. Technol. A 30, 030802 (2012).

    Article  Google Scholar 

  8. Boneschanscher, M. P. et al. Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices. Science 344, 1377–1380 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Rainò, G. et al. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 563, 671–675 (2018).

    Article  PubMed  Google Scholar 

  10. Bloom, B. P., Graff, B. M., Ghosh, S., Beratan, D. N. & Waldeck, D. H. Chirality control of electron transfer in quantum dot assemblies. J. Am. Chem. Soc. 139, 9038–9043 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Abelson, A. et al. Collective topo-epitaxy in the self-assembly of a 3D quantum dot superlattice. Nat. Mater. 19, 49–55 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Kagan, C. R. & Murray, C. B. Charge transport in strongly coupled quantum dot solids. Nat. Nanotechnol. 10, 1013–1026 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Kim, Y.-H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Ugras, T. J. et al. Transforming achiral semiconductors into chiral domains with exceptional circular dichroism. Science 387, eado7201 (2025).

    Article  CAS  PubMed  Google Scholar 

  15. Zeng, C., Chen, Y., Kirschbaum, K., Lambright, K. J. & Jin, R. Emergence of hierarchical structural complexities in nanoparticles and their assembly. Science 354, 1580–1584 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Owen, J. The coordination chemistry of nanocrystal surfaces. Science 347, 615–616 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Yin, Y. & Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Herron, N., Calabrese, J. C., Farneth, W. E. & Wang, Y. Crystal structure and optical properties of Cd32S14(SC6H5)36·DMF4, a cluster with a 15 angstrom CdS core. Science 259, 1426–1428 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Vossmeyer, T. et al. A ‘double-diamond superlattice’ built up of Cd17S4(SCH2CH2OH)26 clusters. Science 267, 1476–1479 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Zheng, N., Bu, X., Lu, H., Zhang, Q. & Feng, P. Crystalline superlattices from single-sized quantum dots. J. Am. Chem. Soc. 127, 11963–11965 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Soloviev, V. N., Eichhöfer, A., Fenske, D. & Banin, U. Size-dependent optical spectroscopy of a homologous series of CdSe cluster molecules. J. Am. Chem. Soc. 123, 2354–2364 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, J., Bu, X., Feng, P. & Wu, T. Metal chalcogenide supertetrahedral clusters: synthetic control over assembly, dispersibility, and their functional applications. Acc. Chem. Res. 53, 2261–2272 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, J., Feng, P., Bu, X. & Wu, T. Atomically precise metal chalcogenide supertetrahedral clusters: frameworks to molecules, and structure to function. Natl Sci. Rev. 9, nwab076 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Gary, D. C. et al. Single-crystal and electronic structure of a 1.3 nm indium phosphide nanocluster. J. Am. Chem. Soc. 138, 1510–1513 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Sandeno, S. F. et al. Ligand steric profile tunes the reactivity of indium phosphide clusters. J. Am. Chem. Soc. 146, 3102–3113 (2024).

    Article  CAS  PubMed  Google Scholar 

  26. Sandeno, S. F. et al. Synthesis and single crystal X-ray diffraction structure of an indium arsenide nanocluster. ACS Cent. Sci. 10, 744–751 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Smith, A. M., Lane, L. A. & Nie, S. Mapping the spatial distribution of charge carriers in quantum-confined heterostructures. Nat. Commun. 5, 4506 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Ithurria, S. et al. Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 10, 936–941 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Ekimov, A. I. et al. Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions. J. Opt. Soc. Am. B 10, 100–107 (1993).

    Article  CAS  Google Scholar 

  30. Del Ben, M., Havenith, R. W. A., Broer, R. & Stener, M. Density functional study on the morphology and photoabsorption of CdSe nanoclusters. J. Phys. Chem. C 115, 16782–16796 (2011).

    Article  Google Scholar 

  31. Voznyy, O., Mokkath, J. H., Jain, A., Sargent, E. H. & Schwingenschlögl, U. Computational study of magic-size CdSe clusters with complementary passivation by carboxylic and amine ligands. J. Phys. Chem. C 120, 10015–10019 (2016).

    Article  CAS  Google Scholar 

  32. Ma, F., Abboud, K. A. & Zeng, C. Precision synthesis of a CdSe semiconductor nanocluster via cation exchange. Nat. Synth. 2, 949–959 (2023).

    Article  CAS  Google Scholar 

  33. Son, D. H., Hughes, S. M., Yin, Y. & Alivisatos, A. P. Cation exchange reactions in ionic nanocrystals. Science 306, 1009–1012 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. De Trizio, L. & Manna, L. Forging colloidal nanostructures via cation exchange reactions. Chem. Rev. 116, 10852–10887 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fenton, J. L., Steimle, B. C. & Schaak, R. E. Tunable intraparticle frameworks for creating complex heterostructured nanoparticle libraries. Science 360, 513–517 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Htoon, S. & Ladd, M. F. C. Crystallographic studies of dihalogenotetramethylethylenediamine complexes of zinc, cadmium, and mercury. IV: general crystallography and molecular geometry. J. Cryst. Mol. Struct. 6, 55–58 (1976).

    Article  CAS  Google Scholar 

  37. Pearson, R. G. Absolute electronegativity and hardness: application to inorganic chemistry. Inorg. Chem. 27, 734–740 (1988).

    Article  CAS  Google Scholar 

  38. Paoletti, P. Formation of metal complexes with ethylenediamine: a critical survey of equilibrium constants, enthalpy and entropy values. Pure Appl. Chem. 56, 491–522 (1984).

    Article  Google Scholar 

  39. Deveson, A., Dehnen, S. & Fenske, D. Syntheses and structures of four new copper(I)–selenium clusters: size dependence of the cluster on the reaction conditions. J. Chem. Soc. Dalton Trans. 4491–4498 (1997).

  40. Bootharaju, M. S. et al. Structure of a subnanometer-sized semiconductor Cd14Se13 cluster. Chem 8, 2978–2989 (2022).

    Article  CAS  Google Scholar 

  41. Wang, Y. et al. Isolation of the magic-size CdSe nanoclusters [(CdSe)13(n-octylamine)13] and [(CdSe)13(oleylamine)13]. Angew. Chem. Int. Ed. 51, 6154–6157 (2012).

    Article  CAS  Google Scholar 

  42. Gréboval, C. et al. Mercury chalcogenide quantum dots: material perspective for device integration. Chem. Rev. 121, 3627–3700 (2021).

    Article  PubMed  Google Scholar 

  43. Taniguchi, S., Green, M. & Lim, T. The room-temperature synthesis of anisotropic CdHgTe quantum dot alloys: a “molecular welding” effect. J. Am. Chem. Soc. 133, 3328–3331 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Lee, W. & Smith, A. M. Interdiffusion-enhanced cation exchange for HgSe and HgCdSe nanocrystals with infrared bandgaps. Nat. Synth. 3, 1243–1254 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dean, J. A. Lange’s Handbook of Chemistry 15th edn (McGraw-Hill, 1999).

  46. Khadka, C. B., Eichhöfer, A., Weigend, F. & Corrigan, J. F. Zinc chalcogenolate complexes as precursors to ZnE and Mn/ZnE (E = S, Se) clusters. Inorg. Chem. 51, 2747–2756 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Pasteur, L. Recherches sur les relations qui peuvent exister entre la forme cristalline, la composition chimique et les sens de la polarisation rotatoire. Ann. Chim. Phys. Sér. 24, 442–459 (1848).

    Google Scholar 

  48. Gal, J. Pasteur and the art of chirality. Nat. Chem. 9, 604–605 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Walsh, M. P., Barclay, J. A., Begg, C. S., Xuan, J. & Kitching, M. O. Conglomerate crystallization in the Cambridge Structural Database (2020–2021). Cryst. Growth Des. 23, 2837–2844 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Walsh, M. P. et al. Identifying a hidden conglomerate chiral pool in the CSD. JACS Au 2, 2235–2250 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Williamson, C. B. et al. Chemically reversible isomerization of inorganic clusters. Science 363, 731–735 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Zhu, M., Aikens, C. M., Hollander, F. J., Schatz, G. C. & Jin, R. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 130, 5883–5885 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F. & Smalley, R. E. C60: buckminsterfullerene. Nature 318, 162–163 (1985).

    Article  CAS  Google Scholar 

  54. Jin, R., Zeng, C., Zhou, M. & Chen, Y. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem. Rev. 116, 10346–10413 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Zeng, C. Precision at the nanoscale: on the structure and property evolution of gold nanoclusters. Pure Appl. Chem. 90, 1409–1428 (2018).

    Article  CAS  Google Scholar 

  56. Gawlik, K.-U., Kipp, L., Skibowski, M., Orłowski, N. & Manzke, R. HgSe: metal or semiconductor? Phys. Rev. Lett. 78, 3165–3168 (1997).

    Article  CAS  Google Scholar 

  57. Madelung, O. in Semiconductors: Data Handbook (ed. Madelung, O.) 173–244 (Springer, 2004).

  58. Zhou, Y. et al. Isolation of amine derivatives of (ZnSe)34 and (CdTe)34. Spectroscopic comparisons of the (II–VI)13 and (II–VI)34 magic-size nanoclusters. Inorg. Chem. 58, 1815–1825 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Wang, Y., Zhou, Y., Zhang, Y. & Buhro, W. E. Magic-size II–VI nanoclusters as synthons for flat colloidal nanocrystals. Inorg. Chem. 54, 1165–1177 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Heath, R. J. Covalency in semiconductor quantum dots. Chem. Soc. Rev. 27, 65–71 (1998).

    Article  CAS  Google Scholar 

  61. Alivisatos, A. P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. B 100, 13226–13239 (1996).

    Article  CAS  Google Scholar 

  62. Hoffmann, R. How chemistry and physics meet in the solid state. Angew. Chem. Int. Ed. 26, 846–878 (1987).

    Article  Google Scholar 

  63. Ekimov, A. I. & Onushchenko, A. A. Quantum size effect in three-dimensional microscopic semiconductor crystals. JETP Lett. 6, 345–349 (1981).

    Google Scholar 

  64. Cardona, M. Fundamental reflectivity spectrum of semiconductors with zinc-blende structure. J. Appl. Phys. 32, 2151–2155 (1961).

    Article  Google Scholar 

  65. Kasuya, A. et al. Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nat. Mater. 3, 99–102 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Htoon, S. & Ladd, M. F. C. Diiodo-(N,N,N′,N′-tetramethylethylenediamine)zinc(II), C6H16I2N2Zn. J. Cryst. Mol. Struct. 4, 357–360 (1974).

    Article  CAS  Google Scholar 

  67. Neese, F., Wennmohs, F., Becker, U. & Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 152, 224108 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).

    Article  CAS  Google Scholar 

  69. Pollak, P. & Weigend, F. Segmented contracted error-consistent basis sets of double- and triple-ζ valence quality for one- and two-component relativistic all-electron calculations. J. Chem. Theory Comput. 13, 3696–3705 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Zheng, J., Xu, X. & Truhlar, D. G. Minimally augmented Karlsruhe basis sets. Theor. Chem. Acc. 128, 295–305 (2011).

    Article  CAS  Google Scholar 

  71. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  72. Perdew, J. P., Burke, K. & Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 54, 16533–16539 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the University of Florida start-up research fund for supporting the experimental work. We thank the National Science Foundation for funding the X-ray diffractometer through grant number CHE-1828064. Theoretical work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science and Los Alamos National Laboratory Institutional Computing Program. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is managed by Triad National Security, LLC for the US Department of Energy’s NNSA, under contract 89233218CNA000001.

Author information

Authors and Affiliations

Authors

Contributions

F.M., S.A.I. and C.Z. conceived of the idea. F.M. performed the synthesis and characterization. F.M. and L.M.D. solved the crystal structures. S.A.I. performed theoretical analysis involving the synthesized structures and ESI-MS characterization. F.M., S.A.I. and C.Z. wrote the paper. C.Z. supervised the project.

Corresponding author

Correspondence to Chenjie Zeng.

Ethics declarations

Competing interests

C.Z. and F.M. declare a pending patent application on the precision synthesis of semiconductor nanoclusters via cation exchange (US2430202). S.A.I. and L.M.D. declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Paul Raithby, Tao Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Characterization of three MI2(tmeda) complexes (M = Zn, Cd, Hg).

a, 1H NMR of the free tmeda ligand and three complexes in CDCl3. The satellite peaks in CdI2(tmeda) correspond to the coupling between 1H and 113Cd (J = 4 Hz). b, TGA measurements of the complexes.

Source data

Extended Data Fig. 2 Synthesis of II–VI nanoclusters from Cu26Se13 template cluster and MI2(tmeda) cation carriers (M = Zn, Cd, Hg).

a, Reaction with ZnI2(tmeda). b, Reaction with CdI2(tmeda). Excess PPr3 was added to increase complex solubility in toluene. c, Reaction with HgI2. Excess tmeda was added to stabilize the HgSe cluster. Left: Photos showing initial colour changes upon injection of the Cu26Se13 cluster solution (0.1 mL) into the cation solution (0.9 mL). Right: In situ UV-Vis spectroscopy monitoring of the diluted reaction mixture. The absorption spectra were recorded every 10 minutes in the first two hours and every hour for the next 14 hours. The first scan was measured around two minutes after mixing the reagents.

Source data

Extended Data Fig. 3 Crystal structures of resulting II–VI clusters and their packing in unit cells.

a, [Zn14Se13(tmeda)6]2+ cluster with co-crystallized [BPh4] counterions and CH2Cl2 solvent molecules. Each unit cell contains two clusters and four counterions with balanced charges. b, Cd14Se13(tmeda)6I2 cluster co-crystallized with one CdI2(tmeda) complex and several toluene molecules. c, Hg14Se13(tmeda)6I2 cluster. Top: individual cluster; middle: top view of unit cell; bottom: side view of unit cell. The cations are drawn in space-filling mode to highlight the orientation of clusters in unit cells. The dark and light green colours in (b) indicate the left and right Cd14Se13 isomers.

Extended Data Fig. 4 Comparison of Se13 anion lattices of the template cluster and three product clusters.

Top: peripheral Se–Se distances in the icosahedron; middle: radial Se–Se distances in the icosahedron; bottom: tabulated Se–Se distances in clusters and bulk lattices.

Extended Data Fig. 5 Average metal-selenium and metal–ligand distances in the product clusters 1-3.

Top: Scheme for cation positions in A14B13 skeleton; bottom: tabulated M–Se and M–L distances of clusters and bulk lattices. The distance between non-bonded atoms is shown in grey.

Extended Data Fig. 6 Solvent-induced structural variations of Cd14Se13 and Zn14Se13 clusters and their UV-vis spectra comparison.

a, Crystal structures of [Zn14Se13(tmeda)6(CH3CN)]2+ (7) crystallized from CH3CN. b, Crystal structures of Cd14Se13(tmeda)6I2 cluster (8) synthesized from CH2Cl2. ce, Comparison of absorption spectra of Zn14Se13 (c), Cd14Se13 (d), and Hg14Se13 (e) clusters.

Source data

Extended Data Fig. 7 A14B13 skeleton as a blueprint for constructing semiconductor nanoclusters.

a, Packing of anions in the bulk face-centred cubic (FCC) lattice and in the icosahedral cluster lattice. b, Bonding of cations in the zincblende lattice and in the A14B13 cluster. c, A14B13 skeleton identified in reported structures. Top: inorganic core oriented along a Cn rotation axis. Middle: B13 icosahedral anion framework highlighted with shading; Bottom: A14 cation coordination shown in space-filling mode. The clusters are reoriented to visualize similar cation positions. Redrawn from the CIF files of the references24,25,26,32.

Extended Data Fig. 8 Visualizing the wavefunctions of II14VI13 artificial atoms via Kohn–Sham orbital analysis.

a, [Zn14Se13(tmeda)6]2+. b, Hg14Se13I2(tmeda)6.

Extended Data Fig. 9 Comparison of calculated TDDFT spectra of clusters 1-3.

a, Without spin–orbit coupling. b, With spin–orbit coupling.

Source data

Extended Data Fig. 10 TDDFT structures and spectra.

Comparison of TDDFT structures and spectra of a series of CdSe clusters modified based on Cd14Se13(tmeda)6I2.

Source data

Supplementary information

Supplementary Information

Supplementary Video 1

Kohn–Sham orbitals of [Zn14Se13(tmeda)6]2+ (1).

Supplementary Video 2

Kohn–Sham orbitals of Cd14Se13(tmeda)6I2 (2).

Supplementary Video 3

Kohn–Sham orbitals of Hg14Se13(tmeda)6I2 (3).

Supplementary Data 1

[Zn14Se13(tmeda)6][BPh4]2 (1).

Supplementary Data 2

Cd14Se13(tmeda)6I2 (2).

Supplementary Data 3

Hg14Se13(tmeda)6I2 (3).

Supplementary Data 4

Zn14Se13(tmeda)6Cl2 (4).

Supplementary Data 5

[Cd14Se13(tmeda)6Cl2]n (5).

Supplementary Data 6

[Hg14Se13(tmeda)6Cl2]n (6).

Supplementary Data 7

[Zn14Se13(tmeda)6(CH3CN)][BPh4]2 (7).

Supplementary Data 8

Cd14Se13(tmeda)6I8×0.25 (8).

Source data

Source Data Fig. 1

Source data for UV-vis spectra of clusters in reaction mixture and crystal solution.

Source Data Fig. 6

Source data for energy plots.

Source Data Fig. 7

Source data for energy levels and theoretical spectra.

Source Data Extended Data Fig./Table 1

Source data for NMR and TGA of MI2(tmeda) complexes.

Source Data Extended Data Fig./Table 2

Source data for in situ UV-vis spectra of cation exchange.

Source Data Extended Data Fig./Table 6

Source data for UV-vis spectra of eight clusters.

Source Data Extended Data Fig./Table 9

Source data for theoretical spectrum comparison.

Source Data Extended Data Fig./Table 10

Source data for theoretical spectra of various CdSe clusters.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, F., Ivanov, S.A., Dobrzycki, L.M. et al. Programmable synthesis of atomically precise semiconductor artificial atoms. Nat. Synth 4, 1258–1269 (2025). https://doi.org/10.1038/s44160-025-00823-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-025-00823-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing