Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atomically defined two-dimensional assembled nanoclusters for Li-ion batteries

Abstract

When nanoclusters crystallize, weak supramolecular interactions lead to the formation of independent monomers (zero-dimensional molecular nodes), while strong intermolecular coordination promotes omnidirectional crystal packing into three-dimensional superstructures. However, achieving two-dimensional (2D) crystalline assembly, such as 2D grid networks, is more challenging. Here we achieve the 2D crystalline assembly of atomically precise metal nanoclusters by establishing intermolecular interactions between the peripheral carboxyl groups of cluster-based nodes and introduced alkali metal cations, forming an alkali metal-dependent and solvent-dependent 2D crystalline assembly. We also observe that the intercluster or interlayer alkali metal cations are mobile, allowing the materials to serve as cation sponges. The high ionic mobility of the cluster-based crystalline materials renders them efficient electrolytes for Li-ion batteries. Overall, these 2D assemblies of atomically precise crystalline nanoclusters provide a versatile platform for ion conduction and energy transmission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of the construction of Ag29 nanocluster-assembled 2D crystal structures and a cluster-based 2D cation sponge.
Fig. 2: Construction of a cluster-assembled 2D crystal structure based on the Ag29-COOLi nanocluster in MeOH.
Fig. 3: Topology of 2D crystals of Ag29 nanoclusters.
Fig. 4: Prediction of the Li+ diffusion coefficient in Ag29-COOLi and Ag29-Li.
Fig. 5: Cluster-based crystalline materials as electrolytes.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are included within the Article and its Supplementary Information. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2370566 (Ag29-PPh3), 2370567 (Ag29-dimer), 2370568 (Ag29-Li), 2370781 (Ag29-COOLi-DMF), 2106345 (Ag29-COONa-DMF), 2370782 (Ag29-COOK-DMF), 2370587 (Ag29-COORb-DMF), 2370586 (Ag29-COOCs-DMF), 2370588 (Ag29-COOLi-MeOH), 2370591 (Ag29-COONa-MeOH), 2370592 (Ag29-COOK-MeOH), 2370593 (Ag29-COORb-MeOH) and 2370590 (Ag29-COOCs-MeOH). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Source data are provided with this paper.

References

  1. Pepinsky, R. Crystal engineering: new concept in crystallography. Phys. Rev. 100, 971 (1955).

    CAS  Google Scholar 

  2. Desiraju, G. R. Crystal Engineering: The Design Of Organic Solids. (Elsevier, 1989).

    Google Scholar 

  3. Disa, A. S., Nova, T. F. & Cavalleri, A. Engineering crystal structures with light. Nat. Phys. 17, 1087–1092 (2021).

    Article  CAS  Google Scholar 

  4. Mukherjee, A., Tothadi, S. & Desiraju, G. R. Halogen bonds in crystal engineering: like hydrogen bonds yet different. Acc. Chem. Res. 47, 2514–2524 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Aakeroy, C. B. & Seddon, K. R. The hydrogen bond and crystal engineering. Chem. Soc. Rev. 22, 397–407 (1993).

    Article  CAS  Google Scholar 

  7. Moulton, B. & Zaworotko, M. J. From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chem. Rev. 101, 1629–1658 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Braga, D., Grepioni, F. & Desiraju, G. R. Crystal engineering and organometallic architecture. Chem. Rev. 98, 1375–1405 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Yao, Q. et al. Counterion-assisted shaping of nanocluster supracrystals. Angew. Chem. Int. Ed. 54, 184–189 (2015).

    Article  CAS  Google Scholar 

  10. Alhilaly, M. J. et al. Assembly of atomically precise silver nanoclusters into nanocluster-based frameworks. J. Am. Chem. Soc. 141, 9585–9592 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Wei, X. et al. Hierarchical structural complexity in atomically precise nanocluster frameworks. Natl Sci. Rev. 8, nwaa077 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Nonappa & Ikkala, O. Hydrogen bonding directed colloidal self-assembly of nanoparticles into 2D crystals, capsids, and supracolloidal assemblies. Adv. Funct. Mater. 28, 1704328 (2018).

    Article  Google Scholar 

  13. Deng, G., Teo, B. K. & Zheng, N. Assembly of chiral cluster-based metal–organic frameworks and the chirality memory effect during their disassembly. J. Am. Chem. Soc. 143, 10214–10220 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Nakatani, R. et al. Unlocking the potential of an atom-precise Ag12 cluster assembled material as a highly efficient SERS sensor for the detection of Hg2+ ions. ACS Mater. Lett. 6, 438–445 (2024).

    Article  CAS  Google Scholar 

  15. Li, H. et al. Optical activity from anisotropic-nanocluster-assembled supercrystals in achiral crystallographic point groups. J. Am. Chem. Soc. 144, 4845–4852 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Manzeli, S. et al. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    Article  CAS  Google Scholar 

  17. Matus, M. F. & Häkkinen, H. Understanding ligand-protected noble metal nanoclusters at work. Nat. Rev. Mater. 8, 372–389 (2023).

    Article  CAS  Google Scholar 

  18. Chakraborty, I. & Pradeep, T. Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem. Rev. 117, 8208–8271 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Kenzler, S. & Schnepf, A. Metalloid gold clusters – past, current and future aspects. Chem. Sci. 12, 3116–3129 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shi, W.-Q. et al. Near-unity NIR phosphorescent quantum yield from a room-temperature solvated metal nanocluster. Science 383, 326–330 (2024).

    Article  CAS  PubMed  Google Scholar 

  21. Albright, E. L. et al. N-Heterocyclic carbene-stabilized atomically precise metal nanoclusters. J. Am. Chem. Soc. 146, 5759–5780 (2024).

    Article  CAS  PubMed  Google Scholar 

  22. Zhao, J. et al. Anchoring of metal complexes on Au25 nanocluster for enhanced photocoupled electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 63, e202316649 (2024).

    Article  CAS  Google Scholar 

  23. Shen, H. et al. N-Heterocyclic carbene-stabilized gold nanoclusters with organometallic motifs for promoting catalysis. J. Am. Chem. Soc. 144, 10844–10853 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Zhao, H. et al. Assembly of air-stable copper(I) alkynide nanoclusters assisted by tripodal polydentate phosphoramide ligands. Nat. Synth. 3, 517–526 (2024).

    Article  CAS  Google Scholar 

  25. Kang, X. & Zhu, M. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 48, 2422–2457 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, X. et al. Ligand-protected metal nanoclusters as low-loss, highly polarized emitters for optical waveguides. Science 381, 784–790 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Li, H. et al. Fluorescence resonance energy transfer in atomically precise metal nanoclusters by cocrystallization-induced spatial confinement. Nat. Commun. 15, 5351 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang, R.-W. et al. Tandem silver cluster isomerism and mixed linkers to modulate the photoluminescence of cluster-assembled materials. Angew. Chem. Int. Ed. 57, 8560–8566 (2018).

    Article  CAS  Google Scholar 

  29. Hou, Y. et al. Synergistic multiple bonds induced dynamic self-assembly of silver nanoclusters into lamellar frameworks with tailored luminescence. Chem. Mater. 34, 8013–8021 (2022).

    Article  CAS  Google Scholar 

  30. Kang, X. & Zhu, M. Intra-cluster growth meets inter-cluster assembly: the molecular and supramolecular chemistry of atomically precise nanoclusters. Coord. Chem. Rev. 394, 1–38 (2019).

    Article  CAS  Google Scholar 

  31. Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).

    Article  CAS  Google Scholar 

  32. Tan, C. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Novoselov, K. S. et al. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Huang, B. et al. Recycling of lithium-ion batteries: recent advances and perspectives. J. Power Sources 399, 274–286 (2018).

    Article  CAS  Google Scholar 

  35. Zhang, C. et al. Anion-sorbent composite separators for high-rate lithium-ion batteries. Adv. Mater. 31, 1808338 (2019).

    Article  Google Scholar 

  36. Li, J. et al. From materials to cell: state-of-the-art and prospective technologies for lithium-ion battery electrode processing. Chem. Rev. 122, 903–956 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Degen, F. et al. Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells. Nat. Energy 8, 1284–1295 (2023).

    Article  CAS  Google Scholar 

  38. AbdulHalim, L. G. et al. Ag29(BDT)12(TPP)4: a tetravalent nanocluster. J. Am. Chem. Soc. 137, 11970–11975 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Furukawa, H. et al. The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013).

    Article  PubMed  Google Scholar 

  40. Yuan, S. et al. Stable metal–organic frameworks: design, synthesis, and applications. Adv. Mater. 30, 1704303 (2018).

    Article  Google Scholar 

  41. Lu, W. et al. Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev. 43, 5561–5593 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Xie, X.-Y. et al. The origin of the photoluminescence enhancement of gold-doped silver nanoclusters: the importance of relativistic effects and heteronuclear gold–silver bonds. Angew. Chem. Int. Ed. 57, 9965–9969 (2018).

    Article  CAS  Google Scholar 

  43. Zhang, J. et al. Evolution of self-assembled ZnTe magic-sized nanoclusters. J. Am. Chem. Soc. 137, 742–749 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Döllefeld, H., Weller, H. & Eychmüller, A. Semiconductor nanocrystal assemblies: experimental pitfalls and a simple model of particle−particle interaction. J. Phys. Chem. B 106, 5604–5608 (2002).

    Article  Google Scholar 

  45. Dong, X.-Y. et al. A flexible fluorescent SCC-MOF for switchable molecule identification and temperature display. Chem. Mater. 30, 2160–2167 (2018).

    Article  CAS  Google Scholar 

  46. Fang, H. & Jena, P. Kinetic effects of anion clusters on the interfacial stability between solid-state electrolyte and metal anode. Phys. Rev. X 2, 043013 (2023).

    Google Scholar 

  47. Fang, H. & Jena, P. Argyrodite-type advanced lithium conductors and transport mechanisms beyond paddle-wheel effect. Nat. Commun. 13, 2078 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jena, P., Fang, H. & Sun, Q. Cluster-based materials for energy harvesting and storage. In Superatoms: Principles, Synthesis and Applications (eds Jena, P. & Sun, Q.) 277–316 (John Wiley & Sons, 2022).

  49. Kim, S. et al. A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries. Nat. Commun. 10, 1081 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Huo, H. et al. A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries. Nat. Commun. 12, 176 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee, D. et al. Shear force effect of the dry process on cathode contact coverage in all-solid-state batteries. Nat. Commun. 15, 4763 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bruce, P. G., Evans, J. & Vincent, C. A. Conductivity and transference number measurements on polymer electrolytes. Solid State Ion. 28, 918–922 (1988).

    Article  Google Scholar 

  53. Xu, J. et al. High-energy lithium-ion batteries: recent progress and a promising future in applications. Energy Environ. Mater. 6, e12450 (2023).

    Article  CAS  Google Scholar 

  54. Leverick, G. & Shao-Horn, Y. Controlling electrolyte properties and redox reactions using solvation and implications in battery functions: a mini-review. Adv. Energy Mater. 13, 2204094 (2023).

    Article  CAS  Google Scholar 

  55. Wang, Y. et al. Fluorine chemistry in rechargeable batteries: challenges, progress, and perspectives. Chem. Rev. 124, 3494–3589 (2024).

    Article  CAS  PubMed  Google Scholar 

  56. Sankar, T. K., Abhilash & Meshram, P. Environmental impact assessment in the entire life cycle of lithium‑ion batteries. Rev. Environ. Contam. Toxicol. 262, 5 (2024).

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of the NSFC (22371003, 22101001, 22471001, U24A20480 and 22473017), the Ministry of Education, Natural Science Foundation of Anhui Province (2408085Y006), the University Synergy Innovation Program of Anhui Province (GXXT-2020-053) and the Scientific Research Program of Universities in Anhui Province (2022AH030009).

Author information

Authors and Affiliations

Contributions

X.K. and M.Z. conceived the initial idea. X.W. designed the research. X.W. and H.L. performed materials preparation, structural determination and characterization. L.Z., X.S. and Z.S. conducted the electrochemical performance tests. Q.T. and Z.H carried out the theoretical calculations. X.W., X.K., Q.T., L.Z. and M.Z. wrote the paper and all authors commented on it.

Corresponding authors

Correspondence to Qing Tang, Lingyun Zhu, Xi Kang or Manzhou Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Puru Jena and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Quantitative estimation of the activation energy.

(a) Arrhenius plots of the Ag29-COOLi and Ag29-Li electrolytes. (b and c) Chronoamperometric profiles for extracting the electronic conductivity.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–78, Tables 1–13, Experiment and Characterization, ORTEP view of Ag29 nanoclusters system structure, Explanations for A and B alerts in Ag29 nanoclusters system structure.

Supplementary Data 1

Crystallographic data for Ag29-PPh3.

Supplementary Data 2

Crystallographic data for Ag29-dimer.

Supplementary Data 3

Crystallographic data for Ag29-Li.

Supplementary Data 4

Crystallographic data for Ag29-COOLi-DMF.

Supplementary Data 5

Crystallographic data for Ag29-COONa-DMF.

Supplementary Data 6

Crystallographic data for Ag29-COOK-DMF.

Supplementary Data 7

Crystallographic data for Ag29-COORb-DMF.

Supplementary Data 8

Crystallographic data for Ag29-COOCs-DMF.

Supplementary Data 9

Crystallographic data for Ag29-COOLi-MeOH.

Supplementary Data 10

Crystallographic data for Ag29-COONa-MeOH.

Supplementary Data 11

Crystallographic data for Ag29-COOK-MeOH.

Supplementary Data 12

Crystallographic data for Ag29-COORb-MeOH.

Supplementary Data 13

Crystallographic data for Ag29-COOCs-MeOH.

Source data

Source Data Fig. 4

NMR, DFT.

Source Data Fig. 5

EIS, LSV, Coulombic efficiency.

Source Data Extended Data Fig. 1

Arrhenius plots, chronoamperometric profiles.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Huang, Z., Sun, X. et al. Atomically defined two-dimensional assembled nanoclusters for Li-ion batteries. Nat. Synth (2025). https://doi.org/10.1038/s44160-025-00852-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-025-00852-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing