Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organic afterglow luminescence for disease diagnosis and treatment

Abstract

Afterglow luminescence imaging relies on the detection of photons from chemical or lattice defects after cessation of irradiation, enabling autofluorescence-free biomedical imaging with a higher signal-to-background ratio compared to fluorescence imaging. In particular, organic afterglow probes benefit from biocompatibility and can be designed with diverse molecular architectures and for various irradiation sources, including light, ultrasound and X-rays. In this Review, we first introduce the mechanisms governing afterglow emission. We then examine design strategies for organic afterglow probes, outlining strategies to improve their afterglow performance, particularly afterglow intensity, extended emission wavelengths, responsivity and diverse excitation sources, to allow bioimaging with high sensitivity and specificity in deep tissues. Finally, we highlight key biomedical applications in disease diagnosis and therapy and provide an overview of remaining challenges and opportunities of organic afterglow imaging.

Key points

  • Organic afterglow luminescence is a process that converts external excitation energy into storable chemical energy, which is then slowly released as light after irradiation ceases.

  • Organic afterglow luminescence probes typically include an afterglow initiator that generates reactive oxygen species upon irradiation, an afterglow substrate that reacts with reactive oxygen species to form a chemical defect and a relay unit that emits the afterglow.

  • Organic probes can be optimized to extend the afterglow wavelength, enhance brightness and allow activation by specific biomarkers.

  • Organic afterglow luminescence can be applied to various biomedical applications, including cancer diagnosis and treatment, inflammation imaging, and image-guided therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optical imaging modalities.
Fig. 2: Organic afterglow materials.
Fig. 3: Optimization of organic afterglow probes.
Fig. 4: Applications of organic afterglow luminescence imaging.
Fig. 5: Organic afterglow luminescence in therapy.

Similar content being viewed by others

References

  1. Weissleder, R. Molecular imaging in cancer. Science 312, 1168–1171 (2006).

    Google Scholar 

  2. Rubin, G. D. Computed tomography: revolutionizing the practice of medicine for 40 years. Radiology 273, S45–S74 (2014).

    Google Scholar 

  3. Withers, P. J. et al. X-ray computed tomography. Nat. Rev. Methods Primers 1, 18 (2021).

    Google Scholar 

  4. Terreno, E., Castelli, D. D., Viale, A. & Aime, S. Challenges for molecular magnetic resonance imaging. Chem. Rev. 110, 3019–3042 (2010).

    Google Scholar 

  5. Moser, E., Stadlbauer, A., Windischberger, C., Quick, H. H. & Ladd, M. E. Magnetic resonance imaging methodology. Eur. J. Nucl. Med. Mol. Imaging 36, 30–41 (2009).

    Google Scholar 

  6. Zhou, J. et al. Fluorescent diagnostic probes in neurodegenerative diseases. Adv. Mater. 32, 2001945 (2020).

    Google Scholar 

  7. Sharma, A. et al. Theranostic fluorescent probes. Chem. Rev. 124, 2699–2804 (2024).

    Google Scholar 

  8. Fujita, K. & Urano, Y. Activity-based fluorescence diagnostics for cancer. Chem. Rev. 124, 4021–4078 (2024).

    Google Scholar 

  9. Vahrmeijer, A. L., Hutteman, M., van der Vorst, J. R., van de Velde, C. J. H. & Frangioni, J. V. Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol. 10, 507–518 (2013).

    Google Scholar 

  10. Hernot, S., van Manen, L., Debie, P., Mieog, J. S. D. & Vahrmeijer, A. L. Latest developments in molecular tracers for fluorescence image-guided cancer surgery. Lancet Oncol. 20, e354–e367 (2019).

    Google Scholar 

  11. Bakhtiar, N., Jaleel, F., Moosa, F. A., Qureshi, N. A. & Jawaid, M. Sentinel lymph node identification by blue dye in patients with breast carcinoma. Pak. J. Med. Sci. 32, 448–451 (2016).

    Google Scholar 

  12. Ishizawa, T. et al. Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer 115, 2491–2504 (2009).

    Google Scholar 

  13. Croce, A. C. & Bottiroli, G. Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis. Eur. J. Histochem. 58, 320–337 (2014).

    Google Scholar 

  14. del Rosal, B. & Benayas, A. Strategies to overcome autofluorescence in nanoprobe-driven in vivo fluorescence imaging. Small Methods 2, 1800075 (2018).

    Google Scholar 

  15. Jiang, Y. & Pu, K. Molecular probes for autofluorescence-free optical imaging. Chem. Rev. 121, 13086–13131 (2021).

    Google Scholar 

  16. McCapra, F. Chemical mechanisms in bioluminescence. Acc. Chem. Res. 9, 201–208 (1976).

    Google Scholar 

  17. Badr, C. E. & Tannous, B. A. Bioluminescence imaging: progress and applications. Trends Biotechnol. 29, 624–633 (2011).

    Google Scholar 

  18. Blau, R., Shelef, O., Shabat, D. & Satchi-Fainaro, R. Chemiluminescent probes in cancer biology. Nat. Rev. Bioeng. 1, 648–664 (2023).

    Google Scholar 

  19. Dragulescu-Andrasi, A., Chan, C. T., De, A., Massoud, T. F. & Gambhir, S. S. Bioluminescence resonance energy transfer (BRET) imaging of protein–protein interactions within deep tissues of living subjects. Proc. Natl. Acad. Sci. USA 108, 12060–12065 (2011).

    Google Scholar 

  20. Buckley, S. M. K. et al. In vivo bioimaging with tissue-specific transcription factor activated luciferase reporters. Sci. Rep. 5, 11842 (2015).

    Google Scholar 

  21. Yang, M. et al. Chemiluminescence for bioimaging and therapeutics: recent advances and challenges. Chem. Soc. Rev. 49, 6800–6815 (2020).

    Google Scholar 

  22. Tannous, R. et al. Spirostrain-accelerated chemiexcitation of dioxetanes yields unprecedented detection sensitivity in chemiluminescence bioassays. ACS Cent. Sci. 10, 28–42 (2024).

    Google Scholar 

  23. David, M. et al. Chemiexcitation acceleration of 1,2-dioxetanes by spiro-fused six-member rings with electron-withdrawing motifs. Angew. Chem. Int. Ed. 63, e202410057 (2024).

    Google Scholar 

  24. Xiang, H., Cheng, J., Ma, X., Zhou, X. & Chruma, J. J. Near-infrared phosphorescence: materials and applications. Chem. Soc. Rev. 42, 6128–6185 (2013).

    Google Scholar 

  25. Zhao, W., He, Z. & Tang, B. Z. Room-temperature phosphorescence from organic aggregates. Nat. Rev. Mater. 5, 869–885 (2020).

    Google Scholar 

  26. Liu, Y., Li, C., Ren, Z., Yan, S. & Bryce, M. R. All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Nat. Rev. Mater. 3, 18020 (2018).

    Google Scholar 

  27. Zhen, X. et al. Ultralong phosphorescence of water-soluble organic nanoparticles for in vivo afterglow imaging. Adv. Mater. 29, 1606665 (2017).

    Google Scholar 

  28. Kabe, R. & Adachi, C. Organic long persistent luminescence. Nature 550, 384–387 (2017).

    Google Scholar 

  29. Nishimura, N., Lin, Z., Jinnai, K., Kabe, R. & Adachi, C. Many exciplex systems exhibit organic long-persistent luminescence. Adv. Funct. Mater. 30, 2000795 (2020).

    Google Scholar 

  30. Chen, L.-J., Yang, C.-X. & Yan, X.-P. Liposome-coated persistent luminescence nanoparticles as luminescence trackable drug carrier for chemotherapy. Anal. Chem. 89, 6936–6939 (2017).

    Google Scholar 

  31. Sun, S.-K. et al. Turning solid into gel for high-efficient persistent luminescence-sensitized photodynamic therapy. Biomaterials 218, 119328 (2019).

    Google Scholar 

  32. le Masne de Chermont, Q. et al. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl. Acad. Sci. USA 104, 9266–9271 (2007).

    Google Scholar 

  33. Liang, L. et al. Controlling persistent luminescence in nanocrystalline phosphors. Nat. Mater. 22, 289–304 (2023).

    Google Scholar 

  34. Miao, Q. et al. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat. Biotechnol. 35, 1102–1110 (2017).

    Google Scholar 

  35. Palner, M., Pu, K., Shao, S. & Rao, J. Semiconducting polymer nanoparticles with persistent near-infrared luminescence for in vivo optical imaging. Angew. Chem. Int. Ed. 54, 11477–11480 (2015).

    Google Scholar 

  36. Wang, Y. et al. Cyclic amplification of the afterglow luminescent nanoreporter enables the prediction of anti-cancer efficiency. Angew. Chem. Int. Ed. 60, 19779–19789 (2021).

    Google Scholar 

  37. Liao, S. et al. A novel afterglow nanoreporter for monitoring cancer therapy. Theranostics 12, 6883–6897 (2022).

    Google Scholar 

  38. Zhen, X., Xie, C. & Pu, K. Temperature-correlated afterglow of a semiconducting polymer nanococktail for imaging-guided photothermal therapy. Angew. Chem. Int. Ed. 57, 3938–3942 (2018).

    Google Scholar 

  39. Lyu, Y. et al. Near-infrared afterglow semiconducting nano-polycomplexes for the multiplex differentiation of cancer exosomes. Angew. Chem. Int. Ed. 58, 4983–4987 (2019).

    Google Scholar 

  40. Jiang, Y. et al. A generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo imaging. Nat. Commun. 10, 2064 (2019).

    Google Scholar 

  41. Ni, X. et al. Near-Infrared afterglow luminescent aggregation-induced emission dots with ultrahigh tumor-to-liver signal ratio for promoted image-guided cancer surgery. Nano Lett. 19, 318–330 (2019).

    Google Scholar 

  42. Liu, Y. et al. Significantly enhanced afterglow brightness via intramolecular energy transfer. ACS Mater. Lett. 3, 713–720 (2021).

    Google Scholar 

  43. Zheng, X. et al. Organic nanoparticles with persistent luminescence for in vivo afterglow imaging-guided photodynamic therapy. Chem. Eur. J. 27, 6911–6916 (2021).

    Google Scholar 

  44. Chen, W. et al. Near-Infrared afterglow luminescence of chlorin nanoparticles for ultrasensitive in vivo imaging. J. Am. Chem. Soc. 144, 6719–6726 (2022).

    Google Scholar 

  45. Duan, X. et al. Activatable persistent luminescence from porphyrin derivatives and supramolecular probes with imaging-modality transformable characteristics for improved biological applications. Angew. Chem. Int. Ed. 61, e202116174 (2022).

    Google Scholar 

  46. Zhu, J. et al. A self-sustaining near-infrared afterglow chemiluminophore for high-contrast activatable imaging. Angew. Chem. Int. Ed. 63, e202318545 (2024).

    Google Scholar 

  47. Yang, L. et al. A highly bright near-infrared afterglow luminophore for activatable ultrasensitive in vivo imaging. Angew. Chem. Int. Ed. 63, e202313117 (2024).

    Google Scholar 

  48. Wang, Y. et al. Enhancing fractionated cancer therapy: a triple-anthracene photosensitizer unleashes long-persistent photodynamic and luminous efficacy. J. Am. Chem. Soc. 146, 6252–6265 (2024).

    Google Scholar 

  49. Wang, Y. et al. In vivo ultrasound-induced luminescence molecular imaging. Nat. Photonics 18, 334–343 (2024).

    Google Scholar 

  50. Wang, Y. et al. Ultrabright and ultrafast afterglow imaging in vivo via nanoparticles made of trianthracene derivatives. Nat. Biomed. Eng. 9, 656–670 (2025).

    Google Scholar 

  51. Xu, C. et al. Nanoparticles with ultrasound-induced afterglow luminescence for tumour-specific theranostics. Nat. Biomed. Eng. 7, 298–312 (2023).

    Google Scholar 

  52. Huang, J. et al. Molecular radio afterglow probes for cancer radiodynamic theranostics. Nat. Mater. 22, 1421–1429 (2023).

    Google Scholar 

  53. Xu, C. et al. A cascade X-ray energy converting approach toward radio-afterglow cancer theranostics. Nat. Nanotechnol. 20, 286–295 (2024).

    Google Scholar 

  54. Wu, L. et al. H2S-activatable near-infrared afterglow luminescent probes for sensitive molecular imaging in vivo. Nat. Commun. 11, 446 (2020).

    Google Scholar 

  55. Anjong, T. F. et al. Multifunction-harnessed afterglow nanosensor for molecular imaging of acute kidney injury in vivo. Small 18, 2200245 (2022).

    Google Scholar 

  56. Chen, C. et al. Amplification of activated near-infrared afterglow luminescence by introducing twisted molecular geometry for understanding neutrophil-involved diseases. J. Am. Chem. Soc. 144, 3429–3441 (2022).

    Google Scholar 

  57. Liu, Y. et al. Ratiometric afterglow luminescent nanoplatform enables reliable quantification and molecular imaging. Nat. Commun. 13, 2216 (2022).

    Google Scholar 

  58. Gao, Z., Zhang, Y., Liu, Q. & Ding, D. Mechanism and design of organic afterglow luminescent probes for cancer theranostics. Med. Mat. 1, 27–39 (2024).

    Google Scholar 

  59. Shen, H. et al. Organic afterglow nanoparticles in bioapplications. Chem. Eur. J. 29, e202301209 (2023).

    Google Scholar 

  60. Wang, X. & Pu, K. Molecular substrates for the construction of afterglow imaging probes in disease diagnosis and treatment. Chem. Soc. Rev. 52, 4549–4566 (2023).

    Google Scholar 

  61. Li, Z., Liu, H. & Zhang, X.-B. Reactive oxygen species-mediated organic long-persistent luminophores light up biomedicine: from two-component separated nano-systems to integrated uni-luminophores. Chem. Soc. Rev. 53, 11207–11227 (2024).

    Google Scholar 

  62. Qu, R., Jiang, X. & Zhen, X. Light/X-ray/ultrasound activated delayed photon emission of organic molecular probes for optical imaging: mechanisms, design strategies, and biomedical applications. Chem. Soc. Rev. 53, 10970–11003 (2024).

    Google Scholar 

  63. Zhu, J., Zhao, L., An, W. & Miao, Q. Recent advances and design strategies for organic afterglow agents to enhance autofluorescence-free imaging performance. Chem. Soc. Rev. 54, 1429–1452 (2025).

    Google Scholar 

  64. Jiang, K. et al. Triple-mode emission of carbon dots: applications for advanced anti-counterfeiting. Angew. Chem. Int. Ed. 55, 7231–7235 (2016).

    Google Scholar 

  65. Alam, P. et al. Organic long-persistent luminescence from a single-component aggregate. J. Am. Chem. Soc. 144, 3050–3062 (2022).

    Google Scholar 

  66. Jinnai, K., Kabe, R., Lin, Z. & Adachi, C. Organic long-persistent luminescence stimulated by visible light in p-type systems based on organic photoredox catalyst dopants. Nat. Mater. 21, 338–344 (2022).

    Google Scholar 

  67. Li, W. et al. Organic long-persistent luminescence from a thermally activated delayed fluorescence compound. Adv. Mater. 32, 2003911 (2020).

    Google Scholar 

  68. Lin, C. et al. Charge trapping for controllable persistent luminescence in organics. Nat. Photonics 18, 350–356 (2024).

    Google Scholar 

  69. Li, Z. et al. Direct aqueous-phase synthesis of sub-10 nm “luminous pearls” with enhanced in vivo renewable near-infrared persistent luminescence. J. Am. Chem. Soc. 137, 5304–5307 (2015).

    Google Scholar 

  70. Lécuyer, T. et al. Chemically engineered persistent luminescence nanoprobes for bioimaging. Theranostics 6, 2488–2524 (2016).

    Google Scholar 

  71. Pei, P. et al. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. Nat. Nanotechnol. 16, 1011–1018 (2021).

    Google Scholar 

  72. Pham, T. C., Nguyen, V.-N., Choi, Y., Lee, S. & Yoon, J. Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy. Chem. Rev. 121, 13454–13619 (2021).

    Google Scholar 

  73. Chen, D. et al. Type I photosensitizers revitalizing photodynamic oncotherapy. Small 17, 2006742 (2021).

    Google Scholar 

  74. Xie, C., Zhen, X., Miao, Q., Lyu, Y. & Pu, K. Self-assembled semiconducting polymer nanoparticles for ultrasensitive near-infrared afterglow imaging of metastatic tumors. Adv. Mater. 30, 1801331 (2018).

    Google Scholar 

  75. Su, X. et al. Enhanced blue afterglow through molecular fusion for bio-applications. Angew. Chem. Int. Ed. 61, e202201630 (2022).

    Google Scholar 

  76. Cui, D., Xie, C., Li, J., Lyu, Y. & Pu, K. Semiconducting photosensitizer-incorporated copolymers as near-infrared afterglow nanoagents for tumor imaging. Adv. Healthc. Mater. 7, 1800329 (2018).

    Google Scholar 

  77. Xu, Y. et al. An aggregation-induced emission dye-powered afterglow luminogen for tumor imaging. Chem. Sci. 11, 419–428 (2020).

    Google Scholar 

  78. Ma, G. et al. Rechargeable afterglow nanotorches for in vivo tracing of cell-based microrobots. Angew. Chem. Int. Ed. 63, e202400658 (2024).

    Google Scholar 

  79. Yang, J. et al. Turn-on chemiluminescence probes and dual-amplification of signal for detection of amyloid beta species in vivo. Nat. Commun. 11, 4052 (2020).

    Google Scholar 

  80. Zhang, J. et al. In vivo three-dimensional brain imaging with chemiluminescence probes in Alzheimer’s disease models. Proc. Natl. Acad. Sci. USA 120, e2310131120 (2023).

    Google Scholar 

  81. Lei, L. et al. Noninvasive imaging of tumor glycolysis and chemotherapeutic resistance via de novo design of molecular afterglow scaffold. J. Am. Chem. Soc. 145, 24386–24400 (2023).

    Google Scholar 

  82. Zheng, G. et al. Photooxidation triggered ultralong afterglow in carbon nanodots. Nat. Commun. 15, 2365 (2024).

    Google Scholar 

  83. Gutkin, S. et al. Boosting chemiexcitation of phenoxy-1,2-dioxetanes through 7-norbornyl and homocubanyl spirofusion. JACS Au 4, 3558–3566 (2024).

    Google Scholar 

  84. Shelef, O. et al. Biocompatible flash chemiluminescent assay enabled by sterically hindered spiro-strained-oxetanyl-1,2-dioxetane. Chem. Eur. J. 30, e202402981 (2024).

    Google Scholar 

  85. Reguero, M., Bernardi, F., Bottoni, A., Olivucci, M. & Robb, M. A. Chemiluminescent decomposition of 1,2-dioxetanes: an MC-SCF/MP2 study with VB analysis. J. Am. Chem. Soc. 113, 1566–1572 (1991).

    Google Scholar 

  86. Vacher, M. et al. Chemi- and bioluminescence of cyclic peroxides. Chem. Rev. 118, 6927–6974 (2018).

    Google Scholar 

  87. Koo, J.-Y. & Schuster, G. B. Chemically initiated electron exchange luminescence. A new chemiluminescent reaction path for organic peroxides. J. Am. Chem. Soc. 99, 6107–6109 (1977).

    Google Scholar 

  88. Schuster, G. B. Chemiluminescence of organic peroxides. Conversion of ground-state reactants to excited-state products by the chemically initiated electron-exchange luminescence mechanism. Acc. Chem. Res. 12, 366–373 (1979).

    Google Scholar 

  89. Isobe, H., Takano, Y., Okumura, M., Kuramitsu, S. & Yamaguchi, K. Mechanistic insights in charge-transfer-induced luminescence of 1,2-dioxetanones with a substituent of low oxidation potential. J. Am. Chem. Soc. 127, 8667–8679 (2005).

    Google Scholar 

  90. Catalani, L. H. & Wilson, T. Electron transfer and chemiluminescence. Two inefficient systems: 1,4-dimethoxy-9,10-diphenylanthracene peroxide and diphenoyl peroxide. J. Am. Chem. Soc. 111, 2633–2639 (1989).

    Google Scholar 

  91. Matsumoto, M., Sakuma, T. & Watanabe, N. Synthesis of bicyclic dioxetanes bearing a 3-hydroxy-4-isoxazolylphenyl moiety: new CIEEL-active dioxetanes emitting light with remarkable high-efficiency in aqueous medium. Tetrahedron Lett. 43, 8955–8958 (2002).

    Google Scholar 

  92. Green, O. et al. Opening a gateway for chemiluminescence cell imaging: distinctive methodology for design of bright chemiluminescent dioxetane probes. ACS Cent. Sci. 3, 349–358 (2017).

    Google Scholar 

  93. Wu, L. et al. Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chem. Soc. Rev. 49, 5110–5139 (2020).

    Google Scholar 

  94. He, S., Xie, C., Jiang, Y. & Pu, K. An organic afterglow protheranostic nanoassembly. Adv. Mater. 31, 1902672 (2019).

    Google Scholar 

  95. Zhang, Y. et al. Molecular engineering of a self-sustaining modular afterglow scaffold for in vivo activatable imaging. Angew. Chem. Int. Ed. 64, e202500801 (2025).

    Google Scholar 

  96. Jares-Erijman, E. A. & Jovin, T. M. FRET imaging. Nat. Biotechnol. 21, 1387–1395 (2003).

    Google Scholar 

  97. Wang, C. & Li, Z. Molecular conformation and packing: their critical roles in the emission performance of mechanochromic fluorescence materials. Mater. Chem. Front. 1, 2174–2194 (2017).

    Google Scholar 

  98. Borisov, S. M. & Wolfbeis, O. S. Optical biosensors. Chem. Rev. 108, 423–461 (2008).

    Google Scholar 

  99. Mei, J., Leung, N. L. C., Kwok, R. T. K., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission: together we shine, united we soar! Chem. Rev. 115, 11718–11940 (2015).

    Google Scholar 

  100. Xu, C. et al. Activatable sonoafterglow nanoprobes for T-cell imaging. Adv. Mater. 35, 2211651 (2023).

    Google Scholar 

  101. Niu, H. et al. Photoinduced electron transfer (PeT) based fluorescent probes for cellular imaging and disease therapy. Chem. Soc. Rev. 52, 2322–2357 (2023).

    Google Scholar 

  102. Zeng, W. et al. An activatable afterglow/MRI bimodal nanoprobe with fast response to H₂S for in vivo imaging of acute hepatitis. Angew. Chem. Int. Ed. 61, e202111759 (2022).

    Google Scholar 

  103. Huang, W. et al. Ratiometric afterglow luminescent imaging of matrix metalloproteinase-2 activity via an energy diversion process. Angew. Chem. Int. Ed. 63, e202404244 (2024).

    Google Scholar 

  104. Yue, R. et al. Imaging-guided companion diagnostics in radiotherapy by monitoring APE1 activity with afterglow and MRI imaging. Nat. Commun. 15, 6349 (2024).

    Google Scholar 

  105. Samanta, P. K. & Misra, R. Intramolecular charge transfer for optical applications. J. Appl. Phys. 133, 020901 (2023).

    Google Scholar 

  106. Schaap, A. P. & Gagnon, S. D. Chemiluminescence from a phenoxide-substituted 1,2-dioxetane: a model for firefly bioluminescence. J. Am. Chem. Soc. 104, 3504–3506 (1982).

    Google Scholar 

  107. Wei, X. et al. Leveraging long-distance singlet-oxygen transfer for bienzyme-locked afterglow imaging of intratumoral granule enzymes. J. Am. Chem. Soc. 146, 17393–17403 (2024).

    Google Scholar 

  108. Shelef, O. et al. Enzymatic activity profiling using an ultrasensitive array of chemiluminescent probes for bacterial classification and characterization. J. Am. Chem. Soc. 146, 5263–5273 (2024).

    Google Scholar 

  109. Liu, P. et al. Mechanically triggered bright chemiluminescence from polymers by exploiting a synergy between masked 2-furylcarbinol mechanophores and 1,2-dioxetane chemiluminophores. J. Am. Chem. Soc. 146, 22151–22156 (2024).

    Google Scholar 

  110. Peukert, C. et al. Enzyme-activated, chemiluminescent siderophore-dioxetane probes enable the selective and highly sensitive detection of bacterial pathogens. Angew. Chem. Int. Ed. 61, e202201423 (2022).

    Google Scholar 

  111. Liu, J., Huang, J., Wei, X., Cheng, P. & Pu, K. Near-infrared chemiluminescence imaging of chemotherapy-induced peripheral neuropathy. Adv. Mater. 36, 2310605 (2024).

    Google Scholar 

  112. Skovsen, E., Snyder, J. W., Lambert, J. D. C. & Ogilby, P. R. Lifetime and diffusion of singlet oxygen in a cell. J. Phys. Chem. B. 109, 8570–8573 (2005).

    Google Scholar 

  113. Midden, W. R. & Wang, S. Y. Singlet oxygen generation for solution kinetics: clean and simple. J. Am. Chem. Soc. 105, 4129–4135 (1983).

    Google Scholar 

  114. Jiang, Y. et al. Acidity-activatable upconversion afterglow luminescence cocktail nanoparticles for ultrasensitive in vivo imaging. Nat. Commun. 15, 2124 (2024).

    Google Scholar 

  115. Cheng, P. & Pu, K. Enzyme-responsive, multi-lock optical probes for molecular imaging and disease theranostics. Chem. Soc. Rev. 53, 10171–10188 (2024).

    Google Scholar 

  116. Zhang, P. et al. And-logic strategy for accurate analysis of Alzheimer’s disease via fluorescent probe lighted up by two specific biomarkers. Anal. Chem. 93, 11337–11345 (2021).

    Google Scholar 

  117. Zhou, H. et al. A tumor-microenvironment-activatable molecular pro-theranostic agent for photodynamic and immunotherapy of cancer. Adv. Mater. 35, 2211485 (2023).

    Google Scholar 

  118. Wei, P. et al. Deformylation reaction-based probe for in vivo imaging of HOCl. Chem. Sci. 9, 495–501 (2018).

    Google Scholar 

  119. Wu, R. et al. Ultrasound-activated NIR chemiluminescence for deep tissue and tumor foci imaging. Anal. Chem. 95, 11219–11226 (2023).

    Google Scholar 

  120. Mitragotri, S. Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat. Rev. Drug Discov. 4, 255–260 (2005).

    Google Scholar 

  121. Martinoli, C. et al. Sonography of entrapment neuropathies in the upper limb (wrist excluded). J. Clin. Ultrasound. 32, 438–450 (2004).

    Google Scholar 

  122. de Almeida e Borges, V. F., Diniz, A. L. D., Cotrim, H. P., Rocha, H. L. O. G. & Andrade, N. B. Sonographic hepatorenal ratio: a noninvasive method to diagnose nonalcoholic steatosis. J. Clin. Ultrasound. 41, 18–25 (2013).

    Google Scholar 

  123. Goddi, A. et al. Vector flow imaging techniques: an innovative ultrasonographic technique for the study of blood flow. J. Clin. Ultrasound. 45, 582–588 (2017).

    Google Scholar 

  124. Flannigan, D. J. & Suslick, K. S. Plasma formation and temperature measurement during single-bubble cavitation. Nature 434, 52–55 (2005).

    Google Scholar 

  125. Wang, Y. et al. Ultrasonic activation of inert poly(tetrafluoroethylene) enables piezocatalytic generation of reactive oxygen species. Nat. Commun. 12, 3508 (2021).

    Google Scholar 

  126. Momose, A. X-ray phase imaging reaching clinical uses. Phys. Med. 79, 93–102 (2020).

    Google Scholar 

  127. Kotas, M. E. & Medzhitov, R. Homeostasis, inflammation, and disease susceptibility. Cell 160, 816–827 (2015).

    Google Scholar 

  128. Nguyen, L. N. M. et al. The mechanisms of nanoparticle delivery to solid tumours. Nat. Rev. Bioeng. 2, 201–213 (2024).

    Google Scholar 

  129. Lyle, A. N. & Taylor, W. R. The pathophysiological basis of vascular disease. Lab. Invest. 99, 284–289 (2019).

    Google Scholar 

  130. Szabó, C. Hydrogen sulphide and its therapeutic potential. Nat. Rev. Drug Discov. 6, 917–935 (2007).

    Google Scholar 

  131. Kass, G. E. N. Mitochondrial involvement in drug-induced hepatic injury. Chem. Biol. Interact. 163, 145–159 (2006).

    Google Scholar 

  132. Pashayan, N. & Pharoah, P. D. P. The challenge of early detection in cancer. Science 368, 589–590 (2020).

    Google Scholar 

  133. Richards, M. A., Westcombe, A. M., Love, S. B., Littlejohns, P. & Ramirez, A. J. Influence of delay on survival in patients with breast cancer: a systematic review. Lancet 353, 1119–1126 (1999).

    Google Scholar 

  134. Richards, M. A., Hiom, S. & Hamilton, W. Diagnosing cancer earlier: what progress is being made? Br. J. Cancer 128, 441–442 (2023).

    Google Scholar 

  135. Andrade, R. J. et al. Drug-induced liver injury. Nat. Rev. Dis. Primers 5, 58 (2019).

    Google Scholar 

  136. Wang, X. & Chen, X. Clinical characteristics of 162 patients with drug-induced liver and/or kidney injury. BioMed. Res. Int. 2020, 3930921 (2020).

    Google Scholar 

  137. Ramachandran, A. & Jaeschke, H. Acetaminophen hepatotoxicity. Semin. Liver Dis. 39, 221–234 (2019).

    Google Scholar 

  138. Wang, S. et al. Fluorescence imaging of pathophysiological microenvironments. Chem. Soc. Rev. 50, 8887–8902 (2021).

    Google Scholar 

  139. Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175 (2013).

    Google Scholar 

  140. Chen, S. et al. Macrophages in immunoregulation and therapeutics. Sig. Transduct. Target. Ther. 8, 207 (2023).

    Google Scholar 

  141. Szabó, C., Ischiropoulos, H. & Radi, R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov. 6, 662–680 (2007).

    Google Scholar 

  142. Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).

    Google Scholar 

  143. Lord, S. J., Rajotte, R. V., Korbutt, G. S. & Bleackley, R. C. Granzyme B: a natural born killer. Immunol. Rev. 193, 31–38 (2003).

    Google Scholar 

  144. Gao, Z. et al. An activatable near-infrared afterglow theranostic prodrug with self-sustainable magnification effect of immunogenic cell death. Angew. Chem. Int. Ed. 61, e202209793 (2022).

    Google Scholar 

  145. Hao, L. et al. Engineering light-initiated afterglow lateral flow immunoassay for infectious disease diagnostics. Biosens. Bioelectron. 212, 114411 (2022).

    Google Scholar 

  146. Chen, W. et al. O₂-relevant afterglow luminescence of chlorin nanoparticles for discriminative detection and isotopic analysis of H₂O and D₂O. Anal. Chem. 95, 5340–5345 (2023).

    Google Scholar 

  147. Yuan, H. et al. Afterglow amplification for fast and sensitive detection of porphyria in whole blood. ACS Appl. Mater. 13, 27991–27998 (2021).

    Google Scholar 

  148. Li, X., Lovell, J. F., Yoon, J. & Chen, X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 17, 657–674 (2020).

    Google Scholar 

  149. Baskaran, R., Lee, J. & Yang, S.-G. Clinical development of photodynamic agents and therapeutic applications. Biomater. Res. 22, 25 (2018).

    Google Scholar 

  150. Dougherty, T. J. et al. Photoradiation therapy for the treatment of malignant tumors. Cancer Res. 38, 2628–2635 (1978).

    Google Scholar 

  151. Agostinis, P. et al. Photodynamic therapy of cancer: an update. CA Cancer J. Clin. 61, 250–281 (2011).

    Google Scholar 

  152. Ran, C. & Pu, K. Molecularly generated light and its biomedical applications. Angew. Chem. Int. Ed. 63, e202314468 (2024).

    Google Scholar 

  153. Xu, X. G., Bednarz, B. & Paganetti, H. A review of dosimetry studies on external-beam radiation treatment with respect to second cancer induction. Phys. Med. Biol. 53, R193–R241 (2008).

    Google Scholar 

  154. He, S., Song, J., Qu, J. & Cheng, Z. Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics. Chem. Soc. Rev. 47, 4258–4278 (2018).

    Google Scholar 

  155. Wen, K. et al. Achieving efficient NIR-II type-I photosensitizers for photodynamic/photothermal therapy upon regulating chalcogen elements. Adv. Mater. 34, 2108146 (2022).

    Google Scholar 

  156. Wang, S. et al. Beyond traditional light: NIR-II light-activated photosensitizers for cancer therapy. J. Mater. Chem. B. 11, 8315–8326 (2023).

    Google Scholar 

  157. Wang, X. et al. Organic phosphorescent nanoscintillator for low-dose X-ray-induced photodynamic therapy. Nat. Commun. 13, 5091 (2022).

    Google Scholar 

  158. Wang, X. et al. Organic phosphors with bright triplet excitons for efficient X-ray-excited luminescence. Nat. Photonics 15, 187–192 (2021).

    Google Scholar 

  159. Gan, N. et al. Organic phosphorescent scintillation from copolymers by X-ray irradiation. Nat. Commun. 13, 3995 (2022).

    Google Scholar 

  160. Shi, L. et al. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. Nanoscale 13, 10748–10764 (2021).

    Google Scholar 

  161. Harris, J. M. & Chess, R. B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2, 214–221 (2003).

    Google Scholar 

  162. Gao, Y., Joshi, M., Zhao, Z. & Mitragotri, S. PEGylated therapeutics in the clinic. Bioeng. Transl. Med. 9, e10600 (2024).

    Google Scholar 

  163. Obaid, G. et al. Engineering photodynamics for treatment, priming and imaging. Nat. Rev. Bioeng. 2, 752–769 (2024).

    Google Scholar 

  164. Kennedy, J. C., Pottier, R. H. & Pross, D. C. Photodynamic therapy with endogenous protoporphyrin: IX: basic principles and present clinical experience. J. Photoch. Photobio. B. 6, 143–148 (1990).

    Google Scholar 

  165. Liu, J., Guo, M. & Chen, C. Nano-bio interactions: a major principle in the dynamic biological processes of nano-assemblies. Adv. Drug Deliv. Rev. 186, 114318 (2022).

    Google Scholar 

  166. Stater, E. P., Sonay, A. Y., Hart, C. & Grimm, J. The ancillary effects of nanoparticles and their implications for nanomedicine. Nat. Nanotechnol. 16, 1180–1194 (2021).

    Google Scholar 

  167. Poon, W. et al. Elimination pathways of nanoparticles. ACS Nano 13, 5785–5798 (2019).

    Google Scholar 

  168. Llop, J. & Lammers, T. Nanoparticles for cancer diagnosis, radionuclide therapy and theranostics. ACS Nano 15, 16974–16981 (2021).

    Google Scholar 

  169. Du, B., Yu, M. & Zheng, J. Transport and interactions of nanoparticles in the kidneys. Nat. Rev. Mater. 3, 358–374 (2018).

    Google Scholar 

  170. Zhong, L. et al. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Sig. Transduct. Target. Ther. 6, 201 (2021).

    Google Scholar 

  171. Li, Z. et al. Superoxide anion-mediated afterglow mechanism-based water-soluble zwitterion dye achieving renal-failure mice detection. J. Am. Chem. Soc. 145, 26736–26746 (2023).

    Google Scholar 

  172. Liu, Y., Teng, L., Lou, X.-F., Zhang, X.-B. & Song, G. “Four-in-one” design of a hemicyanine-based modular scaffold for high-contrast activatable molecular afterglow imaging. J. Am. Chem. Soc. 145, 5134–5144 (2023).

    Google Scholar 

  173. Mestas, J. & Hughes, C. C. W. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).

    Google Scholar 

  174. Salehi Farid, A. et al. CD45-PET is a robust, non-invasive tool for imaging inflammation. Nature 639, 214–224 (2025).

    Google Scholar 

  175. Woo, X. Y. et al. Conservation of copy number profiles during engraftment and passaging of patient-derived cancer xenografts. Nat. Genet. 53, 86–99 (2021).

    Google Scholar 

  176. Allen, T. M. et al. Humanized immune system mouse models: progress, challenges and opportunities. Nat. Immunol. 20, 770–774 (2019).

    Google Scholar 

  177. Shultz, L. D., Ishikawa, F. & Greiner, D. L. Humanized mice in translational biomedical research. Nat. Rev. Immunol. 7, 118–130 (2007).

    Google Scholar 

  178. Wang, X., Yuan, W., Xu, M., Su, X. & Li, F. Visualization of acute inflammation through a macrophage-camouflaged afterglow nanocomplex. ACS Appl. Mater. 14, 259–267 (2022).

    Google Scholar 

  179. Lin, Y. et al. Highly photoreactive semiconducting polymers with cascade intramolecular singlet oxygen and energy transfer for cancer-specific afterglow theranostics. J. Am. Chem. Soc. 147, 2597–2606 (2025).

    Google Scholar 

  180. Pei, Y. et al. Chemical energy lights up Europium-based ultra-bright afterglow for bioanalysis application. Angew. Chem. Int. Ed. 64, e202423791 (2025).

    Google Scholar 

  181. Agrahari, V. & Hiremath, P. Challenges associated and approaches for successful translation of nanomedicines into commercial products. Nanomedicine 12, 819–823 (2017).

    Google Scholar 

  182. Ildikó, C., Ruba, I., Orsolya, J.-L. & Edina, P. Regulatory considerations, challenges and risk-based approach in nanomedicine development. Curr. Med. Chem. 28, 7461–7476 (2021).

    Google Scholar 

  183. Verbeek, F. P. et al. Intraoperative near infrared fluorescence guided identification of the ureters using low dose methylene blue: a first in human experience. J. Urol. 190, 574–579 (2013).

    Google Scholar 

  184. Shakeri-Zadeh, A. & Bulte, J. W. M. Imaging-guided precision hyperthermia with magnetic nanoparticles. Nat. Rev. Bioeng. 3, 245–260 (2025).

    Google Scholar 

  185. FDA. Drug products, including biological products, that contain nanomaterials guidance for industry; https://www.fda.gov/media/157812/download (2022).

  186. Hong, G., Antaris, A. L. & Dai, H. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1, 0010 (2017).

    Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (22274107) and the Outstanding Youth Fund of Jiangsu Province (BK20230009).

Author information

Authors and Affiliations

Authors

Contributions

L.Z. researched data and contributed to the discussion of content and writing. Q.M. researched data and contributed to the discussion of content, writing, and reviewing/editing the manuscript before submission.

Corresponding author

Correspondence to Qingqing Miao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Citation diversity statement

The authors acknowledge that research authored by scholars from historically excluded groups are systematically under-cited. Every attempt has been made to reference relevant research in a manner that is equitable in terms of racial, ethnic, gender and geographical representation.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Xiaoyuan Chen, Chongzhao Ran, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Miao, Q. Organic afterglow luminescence for disease diagnosis and treatment. Nat Rev Bioeng 3, 955–975 (2025). https://doi.org/10.1038/s44222-025-00343-0

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44222-025-00343-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing