Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exploring CO2 reduction and crossover in membrane electrode assemblies

Abstract

Electrochemical CO2 reduction (CO2R) using renewable electricity is a key pathway toward synthesizing fuels and chemicals. In this study, multi-physics modeling is used to interpret experimental data obtained for CO2R to CO using Ag catalysts in a membrane electrode assembly. The one-dimensional model is validated using measured CO2 crossover and product formation rates. The kinetics of CO formation are described by Marcus–Hush–Chidsey kinetics, which enables accurate prediction of the experimental data by accounting for the reorganization of the solvent during CO2R. The results show how the performance is dictated by competing phenomena including ion formation and transport, CO2 solubility, and water management. The model shows that increasing the ion-exchange capacity of the membrane and surface area of the catalyst increases CO formation rates by >100 mA cm–2 without negatively impacting CO2 utilization. Here we provide insights into how to manage the trade-off between productivity and CO2 utilization in CO2 electrolyzers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrolyzer architecture and model domain.
Fig. 2: Model validation with polarization data and CO2 crossover measurements.
Fig. 3: Concentration profiles in the CO2 electrolyzer.
Fig. 4: Coupled ion and water transport in the MEA.
Fig. 5: Effect of catalyst-layer SSA and thickness on CO2R.
Fig. 6: Effect of membrane IEC on CO2R.

Similar content being viewed by others

Data availability

The experimental data are available as an excel file in the Supplementary Information.

References

  1. Izadi, P. & Harnisch, F. Microbial vertical bar electrochemical CO2 reduction: to integrate or not to integrate? Joule 6, 935–940 (2022).

    Article  Google Scholar 

  2. De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Somoza-Tornos, A., Guerra, O. J., Crow, A. M., Smith, W. A. & Hodge, B. M. Process modeling, techno-economic assessment, and life cycle assessment of the electrochemical reduction of CO2: a review. Iscience 24, 102813 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Salvatore, D. & Berlinguette, C. P. Voltage matters when reducing CO2 in an electrochemical flow cell. ACS Energy Lett. 5, 215–220 (2020).

    Article  CAS  Google Scholar 

  5. Jouny, M., Luc, W. & Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    Article  CAS  Google Scholar 

  6. Endrodi, B. et al. Operando cathode activation with alkali metal cations for high current density operation of water-fed zero-gap carbon dioxide electrolysers. Nat. Energy 6, 439–448 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kutz, R. B. et al. Sustainion imidazolium-functionalized polymers for carbon dioxide electrolysis. Energy Technol. Ger. 5, 929–936 (2017).

    Article  CAS  Google Scholar 

  8. Jeng, E. & Jiao, F. Investigation of CO2 single-pass conversion in a flow electrolyzer. React. Chem. Eng. 5, 1768–1775 (2020).

    Article  CAS  Google Scholar 

  9. Blommaert, M. A., Subramanian, S., Yang, K., Smith, W. A. & Vermaas, D. A. High indirect energy consumption in AEM-based CO2 electrolyzers demonstrates the potential of bipolar membranes. ACS Appl. Mater. Interfaces 14, 557–563 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. da Cunha, S. & Resasco, J. Maximizing single-pass conversion does not result in practical readiness for CO2 reduction electrolyzers. Nat. Commun. 14, 5513 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xie, K. et al. Bipolar membrane electrolyzers enable high single-pass CO2 electroreduction to multicarbon products. Nat. Commun. 13, 3609 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Disch, J., Ingenhoven, S. & Vierrath, S. Bipolar membrane with porous anion exchange layer for efficient and long-term stable electrochemical reduction of CO2 to CO. Adv. Energy Mater. 13, 2301614 (2023).

    Article  CAS  Google Scholar 

  13. Lees, E. W., Mowbray, B. A. W., Parlane, F. G. L. & Berlinguette, C. P. Gas diffusion electrodes and membranes for CO2 reduction electrolysers. Nat. Rev. Mater. 7, 55–64 (2022).

    Article  CAS  Google Scholar 

  14. Salvatore, D. A. et al. Designing anion exchange membranes for CO2 electrolysers. Nat. Energy 6, 339–348 (2021).

    Article  CAS  Google Scholar 

  15. Weng, L. C., Bell, A. T. & Weber, A. Z. Towards membrane–electrode assembly systems for CO2 reduction: a modeling study. Energ. Environ. Sci. 12, 1950–1968 (2019).

    Article  CAS  Google Scholar 

  16. Blake, J. W., Padding, J. T. & Haverkort, J. W. Analytical modelling of CO2 reduction in gas-diffusion electrode catalyst layers. Electrochim. Acta 393, 138987 (2021).

    Article  CAS  Google Scholar 

  17. Weng, L. C., Bell, A. T. & Weber, A. Z. Modeling gas-diffusion electrodes for CO2 reduction. Phys. Chem. Chem. Phys. 20, 16973–16984 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Loffelholz M. et al Modeling electrochemical CO2 reduction at silver gas diffusion electrodes using a TFFA approach. Chem. Eng. J. 435, 134920 (2022).

  19. Romiluyi, O., Danilovic, N., Bell, A. T. & Weber, A. Z. Membrane-electrode assembly design parameters for optimal CO2 reduction. Electrochem. Sci. Adv. 3, e2100186 (2023).

    Article  CAS  Google Scholar 

  20. Brown, S. M. et al Electron transfer limitation in carbon dioxide reduction revealed by data-driven Tafel analysis. Preprint at https://doi.org/10.26434/chemrxiv.13244906.v1 (2020).

  21. Corpus, K. R. M. et al. Coupling covariance matrix adaptation with continuum modeling for determination of kinetic parameters associated with electrochemical CO2 reduction. Joule https://doi.org/10.1016/j.joule.2023.05.007 (2023).

  22. Henstridge, M. C., Laborda, E., Rees, N. V. & Compton, R. G. Marcus–Hush–Chidsey theory of electron transfer applied to voltammetry: a review. Electrochim. Acta 84, 12–20 (2012).

    Article  CAS  Google Scholar 

  23. Bazant, M. Z. Unified quantum theory of electrochemical kinetics by coupled ion-electron transfer. Faraday Discuss. 246, 60–124 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Reddy, P. N., Reddy, M. H. P., Pierson, J. F. & Uthanna, S. Characterization of silver oxide films formed by reactive RF sputtering at different substrate temperatures. ISRN Opt. 2014, 684317 (2014).

    Article  Google Scholar 

  25. Vass, A. et al. Local chemical environment governs anode processes in CO2 electrolyzers. ACS Energy Lett. 6, 3801–3808 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wheeler, D. G. et al. Quantification of water transport in a CO2 electrolyzer. Energ. Environ. Sci. 13, 5126–5134 (2020).

    Article  CAS  Google Scholar 

  27. Petrovick, J. G. et al. Electrochemical measurement of water transport numbers in anion-exchange membranes. J. Electrochem. Soc. 170, 114519 (2023).

    Article  Google Scholar 

  28. Dunwell, M. et al. The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold. J. Am. Chem. Soc. 139, 3774–3783 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Hashiba, H. et al. Effects of electrolyte buffer capacity on surface reactant species and the reaction rate of CO in electrochemical CO2 reduction. J. Phys. Chem. C 122, 3719–3726 (2018).

    Article  CAS  Google Scholar 

  30. Luo X. Y., Kushner D. I., Kusoglu A. Anion exchange membranes: the effect of reinforcement in water and electrolyte. J. Membrane Sci. https://doi.org/10.1016/j.memsci.2023.121945 (2023).

  31. Andersen, M. B. et al. Current-induced membrane discharge. Phys. Rev. Lett. 109, 108301 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Zenyuk, I. V., Das, P. K. & Weber, A. Z. Understanding impacts of catalyst-layer thickness on fuel-cell performance via mathematical modeling. J. Electrochem. Soc. 163, F691–F703 (2016).

    Article  CAS  Google Scholar 

  33. Bui, J. C. et al. Analysis of bipolar membranes for electrochemical CO2 capture from air and oceanwater. Energ. Environ. Sci. 16, 5076–5095 (2023).

    Article  CAS  Google Scholar 

  34. Weng, L. C., Bell, A. T. & Weber, A. Z. A systematic analysis of Cu-based membrane-electrode assemblies for CO2 reduction through multiphysics simulation. Energ. Environ. Sci. 13, 3592–3606 (2020).

    Article  CAS  Google Scholar 

  35. Khan, S. U. M. & Bockris, J. O. Electronic states in solution and charge-transfer. J. Phys. Chem. US 87, 2599–2603 (1983).

    Article  CAS  Google Scholar 

  36. Zeng, Y., Smith, R. B., Bai, P. & Bazant, M. Z. Simple formula for Marcus–Hush–Chidsey kinetics. J. Electroanal. Chem. 735, 77–83 (2014).

    Article  CAS  Google Scholar 

  37. Smith, R. B. & Bazant, M. Z. Multiphase porous electrode theory. J. Electrochem. Soc. 164, E3291 (2017).

    Article  CAS  Google Scholar 

  38. Singh, M. R., Goodpaster, J. D., Weber, A. Z., Head-Gordon, M. & Bell, A. T. Mechanistic insights into electrochemical reduction of CO2 over Ag using density functional theory and transport models. Proc. Natl Acad. Sci. USA 114, E8812–E8821 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Peng, J., Roy, A. L., Greenbaum, S. G. & Zawodzinski, T. A. Effect of CO2 absorption on ion and water mobility in an anion exchange membrane. J. Power Sources 380, 64–75 (2018).

    Article  CAS  Google Scholar 

  40. Fuller, E. N., Schettle, P. D. & Giddings, J. C. A new method for prediction of binary gas-phase diffusion coeffecients. Ind. Eng. Chem. 58, 19-+ (1966).

    Google Scholar 

  41. Yang, Z. M. et al. Modeling and upscaling analysis of gas diffusion electrode-based electrochemical carbon dioxide reduction systems. ACS Sustain. Chem. Eng. 9, 351–361 (2021).

    Article  CAS  Google Scholar 

  42. Weisenberger, S. & Schumpe, A. Estimation of gas solubilities in salt solutions at temperatures from 273 K to 363 K. Aiche J. 42, 298–300 (1996).

    Article  CAS  Google Scholar 

  43. Petrovick, J. G. et al. Electrochemical measurement of water transport numbers in anion-exchange membranes. J. Electrochem. Soc. 170, 114519 (2023).

Download references

Acknowledgements

The authors acknowledge A. J. King for graphic design and interpretation of the CO2R reorganization energy, and J. G. Petrovick for assistance with implementing the electro-osmotic coefficients in the model. Transmission electron microscopy and powder X-ray diffraction were performed by D. Lee in H. Zheng’s group, supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (BES), Materials Sciences and Engineering Division under contract no. DE-AC02-05-CH11231 within the in situ TEM programme (KC22ZH). The authors gratefully acknowledge Lawrence Berkeley National Laboratory’s Laboratory Directed Research and Development (LDRD) grant for funding. This material is also partially based upon work performed by support from the DOE EERE Bioenergy Technologies Office under contract no. DE-AC02-05CH11231 (A.Z.W). E.W.L. acknowledges support from the National Science and Engineering Research Council (NSERC) postdoctoral fellowship. J.C.B. was supported in part by a fellowship award under contract FA9550-21-F-0003 through the National Defense Science and Engineering Graduate (NDSEG) Fellowship Program, sponsored by the Army Research Office (ARO).

Author information

Authors and Affiliations

Authors

Contributions

E.W.L. conceived the study, developed the model and wrote the initial manuscript draft. J.C.B. helped implement the Marcus–Hush–Chidsey kinetics and provided modeling support. O.R. performed all the experiments in the study. A.T.B. and A.Z.W. supervised the study, contributed to theory and model development, helped analyze the experimental data and managed the project. All authors contributed to writing and editing the manuscript.

Corresponding author

Correspondence to Adam Z. Weber.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Haotian Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–6, Figs. 1–23, model parameters and nomenclature.

Supplementary Data.

Experimental CO and H2 partial current densities and CO2 crossover measurements.

Source data

Source Data Fig. 2

Data in Fig. 2 of main text.

Source Data Fig. 3

Data in Fig. 3 of main text.

Source Data Fig. 4

Data in Fig. 4 of main text.

Source Data Fig. 5

Data in Fig. 5 of main text.

Source Data Fig. 6

Data in Fig. 6 of main text.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lees, E.W., Bui, J.C., Romiluyi, O. et al. Exploring CO2 reduction and crossover in membrane electrode assemblies. Nat Chem Eng 1, 340–353 (2024). https://doi.org/10.1038/s44286-024-00062-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44286-024-00062-0

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics