Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineering MOx/Ni inverse catalysts for low-temperature CO2 activation with high methane yields

Abstract

Low-temperature methanation allows the near-equilibrium conversion of CO2 to methane at atmospheric pressure, promising remarkable energy efficiency and economic interests. However, it remains challenging for the efficient catalytic activation of CO2 at low temperature owing to the kinetic limitations of hydrogenation intermediates. Here we report that Ni-based inverse catalysts composed of oxide nano-islands loaded on metallic Ni support show significant activity advantages over traditional Ni/oxide with the same composition. The optimized CeZrOx/Ni catalyst realizes ~90% CO2 conversion and >99% CH4 selectivity at 200 °C and atmospheric pressure; it also exhibits excellent long-term stability and overheating/start–stop cyclic operation stability. Mechanistic studies show that the inverse interface effectively modulates H2 and CO2 coverage and alters the configuration of adsorbed oxygenates, which benefits the hydrogenation of surface intermediates. Energy and economic analyses demonstrate that the low-temperature CO2 methanation process powered by inverse catalysts potentially reduces both capital investment and methane production costs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The catalytic performance of inverse catalysts for low-temperature CO2 hydrogenation.
Fig. 2: The catalytic performance of CeZrOx/Ni inverse catalysts.
Fig. 3: Structural characterization of the inverse 13 mol% CeZrOx/Ni catalysts.
Fig. 4: Mechanism of CO2 hydrogenation on conventional and inverse interfacial structures.
Fig. 5: Economic analysis of methanation in the low- and high-temperature processes.

Similar content being viewed by others

Data availability

All data are available within the Article and its Supplementary Information. The atomic coordinates of the optimized computational models are provided in Supplementary Data 1. Source data are provided with this paper.

References

  1. Marques Mota, F. et al. From CO2 methanation to ambitious long-chain hydrocarbons: alternative fuels paving the path to sustainability. Chem. Soc. Rev. 48, 205–259 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Chu, S. et al. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    Article  CAS  Google Scholar 

  3. Gan, Y. et al. Carbon footprint of global natural gas supplies to China. Nat. Commun. 11, 824 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tébar-Soler, C. et al. Low-oxidation-state Ru sites stabilized in carbon-doped RuO2 with low-temperature CO2 activation to yield methane. Nat. Mater. 22, 762–768 (2023).

    Article  PubMed  Google Scholar 

  5. Zou, T. et al. ZnO-promoted inverse ZrO2–Cu catalysts for CO2-based methanol synthesis under mild conditions. ACS Sustain. Chem. Eng. 10, 81–90 (2021).

    Article  Google Scholar 

  6. Jiang, H. et al. Light-driven CO2 methanation over Au-grafted Ce0.95Ru0.05O2 solid-solution catalysts with activities approaching the thermodynamic limit. Nat. Catal. 6, 519–530 (2023).

    Article  CAS  Google Scholar 

  7. Das, S. et al. Core–shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem. Soc. Rev. 49, 2937–3004 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Yang, C. et al. Intrinsic mechanism for carbon dioxide methanation over ru-based nanocatalysts. ACS Catal. 13, 11556–11565 (2023).

    Article  CAS  Google Scholar 

  9. Aitbekova, A. et al. Low-temperature restructuring of CeO2-supported Ru nanoparticles determines selectivity in CO2 catalytic reduction. J. Am. Chem. Soc. 140, 13736–13745 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Vogt, C. et al. The renaissance of the Sabatier reaction and its applications on Earth and in space. Nat. Catal. 2, 188–197 (2019).

    Article  CAS  Google Scholar 

  11. Lee, Y. H. et al. Role of oxide support in Ni based catalysts for CO2 methanation. RSC Adv. 11, 17648–17657 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vogt, C. et al. Publisher Correction: Unravelling structure sensitivity in CO2 hydrogenation over nickel. Nat. Catal. 1, 163–163 (2018).

    Article  Google Scholar 

  13. Vogt, C. et al. Dynamic restructuring of supported metal nanoparticles and its implications for structure insensitive catalysis. Nat. Commun. 12, 7096 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lin, L. et al. Effect of Ni particle size on the production of renewable methane from CO2 over Ni/CeO2 catalyst. J. Energy Chem. 61, 602–611 (2021).

    Article  CAS  Google Scholar 

  15. Struijs, J. J. C. et al. Ceria-supported cobalt catalyst for low-temperature methanation at low partial pressures of CO2. Angew. Chem. Int. Ed. 62, e202214864 (2023).

    Article  CAS  Google Scholar 

  16. Parastaev, A. et al. Boosting CO2 hydrogenation via size-dependent metal–support interactions in cobalt/ceria-based catalysts. Nat. Catal. 3, 526–533 (2020).

    Article  CAS  Google Scholar 

  17. Li, S. et al. Iron carbides: control synthesis and catalytic applications in COx hydrogenation and electrochemical HER. Adv. Mater. 31, 1901796 (2019).

    Article  CAS  Google Scholar 

  18. Zhang, Z. et al. Eu3+ doping-promoted Ni–CeO2 interaction for efficient low-temperature CO2 methanation. Appl. Catal. B 317, 121800 (2022).

    Article  CAS  Google Scholar 

  19. Ren, J. et al. Promotional effects of Ru and Fe on Ni/ZrO2 catalyst during CO2 methanation: a comparative evaluation of the mechanism. J. Energy Chem. 86, 351–361 (2023).

    Article  CAS  Google Scholar 

  20. Aziz, M. A. A. et al. CO2 methanation over Ni-promoted mesostructured silica nanoparticles: influence of Ni loading and water vapor on activity and response surface methodology studies. Chem. Eng. J. 260, 757–764 (2015).

    Article  CAS  Google Scholar 

  21. De Masi, D. et al. Engineering iron–nickel nanoparticles for magnetically induced CO2 methanation in continuous flow. Angew. Chem. Int. Ed. 59, 6187–6191 (2020).

    Article  Google Scholar 

  22. Li, J. et al. Enhanced CO2 methanation activity of Ni/anatase catalyst by tuning strong metal–support interactions. ACS Catal. 9, 6342−–66348 (2019).

    Article  Google Scholar 

  23. Ye, R. et al. Boosting low-temperature CO2 hydrogenation over Ni-based catalysts by tuning strong metal–support interactions. Angew. Chem. Int. Ed. 63, e202317669 (2024).

    Article  CAS  Google Scholar 

  24. Ma, L. et al. Enhanced low-temperature CO2 methanation performance of Ni/ZrO2 catalysts via a phase engineering strategy. Chem. Eng. J. 446, 137031 (2022).

    Article  CAS  Google Scholar 

  25. Wu, C. et al. Inverse ZrO2/Cu as a highly efficient methanol synthesis catalyst from CO2 hydrogenation. Nat. Commun. 11, 5767 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, X. et al. In situ spectroscopic characterization and theoretical calculations identify partially reduced ZnO1−x/Cu interfaces for methanol synthesis from CO2. Angew. Chem. Int. Ed. 61, e202202330 (2022).

    Article  CAS  Google Scholar 

  27. Xu, Y. et al. Cu-supported nano-ZrZnOx as a highly active inverse catalyst for low temperature methanol synthesis from CO2 hydrogenation. Appl. Catal. B 344, 123656 (2024).

    Article  CAS  Google Scholar 

  28. Xu, Y. et al. Insights into the interfacial structure of Cu/ZrO2 catalysts for methanol synthesis from CO2 hydrogenation: effects of Cu-supported nano-ZrO2 inverse interface. Chem. Eng. J. 470, 144006 (2023).

    Article  CAS  Google Scholar 

  29. Alarcón, A. et al. Optimization of nickel and ceria catalyst content for synthetic natural gas production through CO2 methanation. Fuel Process. Technol. 193, 114–122 (2019).

    Article  Google Scholar 

  30. Wang, C. et al. Nickel catalyst stabilization via graphene encapsulation for enhanced methanation reaction. J. Catal. 334, 42–51 (2016).

    Article  CAS  Google Scholar 

  31. Xu, X. et al. Facile Cr3+-doping strategy dramatically promoting Ru/CeO2 for low-temperature CO2 methanation: unraveling the roles of surface oxygen vacancies and hydroxyl groups. ACS Catal. 11, 5762–5775 (2021).

    Article  CAS  Google Scholar 

  32. Navarro-Jaén, S. et al. Size-tailored Ru nanoparticles deposited over γ-Al2O3 for the CO2 methanation reaction. Appl. Surf. Sci. 483, 750–761 (2019).

    Article  Google Scholar 

  33. Zhang, Y. et al. Ru/TiO2 catalysts with size-dependent metal/support interaction for tunable reactivity in Fischer–Tropsch synthesis. ACS Catal. 10, 12967–12975 (2020).

    Article  CAS  Google Scholar 

  34. Zhao, Z. et al. Effect of rutile content on the catalytic performance of Ru/TiO2 catalyst for low-temperature CO2 methanation. ACS Sustain. Chem. Eng. 9, 14288–14296 (2021).

    Article  CAS  Google Scholar 

  35. Ashok, J. et al. A review of recent catalyst advances in CO2 methanation processes. Catal. Today 356, 471–489 (2020).

    Article  CAS  Google Scholar 

  36. Gao, J. et al. Recent advances in methanation catalysts for the production of synthetic natural gas. RSC Adv. 5, 22759–22776 (2015).

    Article  CAS  Google Scholar 

  37. Yang, J. et al. A hydrothermally stable irreducible oxide-modified Pd/MgAl2O4 catalyst for methane combustion. Angew. Chem. Int. Ed. 59, 18522–18526 (2020).

    Article  CAS  Google Scholar 

  38. Wang, X.-F. et al. WO3 boosted water tolerance of Pt nanoparticle on SO42−–ZrO2 for propane oxidation. Appl. Catal. B 338, 123000 (2023).

    Article  CAS  Google Scholar 

  39. Hu, B. et al. Distinct crystal-facet-dependent behaviors for single-atom palladium-on-ceria catalysts: enhanced stabilization and catalytic properties. Adv. Mater. 34, 2107721 (2022).

    Article  CAS  Google Scholar 

  40. Feng, W.-H. et al. Insights into bimetallic oxide synergy during carbon dioxide hydrogenation to methanol and dimethyl ether over GaZrOx oxide catalysts. ACS Catal. 11, 4704–4711 (2021).

    Article  CAS  Google Scholar 

  41. Zhang, J. et al. Engineering Cu+/CeZrOx interfaces to promote CO2 hydrogenation to methanol. J. Energy Chem. 77, 45–53 (2023).

    Article  CAS  Google Scholar 

  42. Lee, K. et al. Engineering nanoscale H supply chain to accelerate methanol synthesis on ZnZrOx. Nat. Commun. 14, 819 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao, H. et al. The role of Cu1–O3 species in single-atom Cu/ZrO2 catalyst for CO2 hydrogenation. Nat. Catal. 5, 818–831 (2022).

    Article  CAS  Google Scholar 

  44. Wang, C. et al. Ru-based catalysts for efficient CO2 methanation: synergistic catalysis between oxygen vacancies and basic sites. Nano Res. 16, 12153–12164 (2023).

    Article  CAS  Google Scholar 

  45. Xie, Y. et al. Frustrated Lewis pairs boosting low-temperature CO2 methanation performance over Ni/CeO2 nanocatalysts. ACS Catal. 12, 10587–10602 (2022).

    Article  CAS  Google Scholar 

  46. Tan, T. H. et al. Unlocking the potential of the formate pathway in the photo-assisted Sabatier reaction. Nat. Catal. 3, 1034–1043 (2020).

    Article  CAS  Google Scholar 

  47. Tripodi, A. et al. Carbon dioxide methanation: design of a fully integrated plant. Energy Fuels 34, 7242–7256 (2020).

    Article  CAS  Google Scholar 

  48. Peters, M. S. et al. Plant Design and Economics for Chemical Engineers (McGraw-Hill, 2003).

    Google Scholar 

  49. Tang, X. et al. Thermally stable Ni foam-supported inverse CeAlOx/Ni ensemble as an active structured catalyst for CO2 hydrogenation to methane. Nat. Commun. 15, 3115 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kresse, G. et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  51. Kresse, G. et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  52. Perdew, J. P. et al. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  54. Monkhorst, H. J. et al. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  55. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article  Google Scholar 

  56. Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Zhejiang Provincial Natural Science Foundation of China (LR22B030003, L.L.; LQ24B030016, C.S.), Natural Science Foundation of China (22278367, L.L.), China Postdoctoral Science Foundation Grant (2022M712817, C.S.), Research Fund of Department of Education of Zhejiang Province (Y202249632, L.L.), National Natural Science Foundation of China 22232001 (D.M.), National Key R&D Program of China 2021YFA1501102 (D.M.), XPLORER Prize of Tencent Foundation (D.M.), New Cornerstone Science Foundation of Tencent Foundation (D.M.), Natural Science Foundation of China (22225206, X.W.), Natural Science Foundation of China (22202224, J.L.) and the Project of National Natural Science Foundation of China (U22A20415, Z.L.).

Author information

Authors and Affiliations

Contributions

L.L., D.M. and X.L. designed the study. C.S. and X.T. performed most of the reactions. X.T. and H. Lu carried out the stability experiments. J.L. and X.-D.W. performed the DFT calculations. R.W. and Z.L. performed the energy and economy analyses. K.W., Z.G. and F.Y. performed the TEM characterization. C.S. and H. Li carried out the DRIFTS analysis. C.S., L.L., S.Y. and M.P. wrote the paper. All authors discussed and revised the paper.

Corresponding authors

Correspondence to Zuwei Liao, Xiao-Dong Wen, Ding Ma or Lili Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Patricia Concepcion, Atsushi Urakawa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–28, Discussion and Tables 1–15.

Supplementary Data 1

Atomic coordinates of the optimized computational models

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, C., Liu, J., Wang, R. et al. Engineering MOx/Ni inverse catalysts for low-temperature CO2 activation with high methane yields. Nat Chem Eng 1, 638–649 (2024). https://doi.org/10.1038/s44286-024-00122-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44286-024-00122-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing