Extended Data Fig. 8: The maximal compression ratio \({\overline{\delta }}_{\max }\) as a function of the volume ratio of a droplet to a pillar Vd/Vp under different Kc.
From: Freezing droplet ejection by spring-like elastic pillars

It can be found that \({\bar{\delta }}_{\max }\) first increases as \({V}_{{\rm{d}}}/{V}_{{\rm{p}}}\) increases and then reaches a plateau of 1. Here, the fracture strength of ice is taken as \({\sigma }_{{\rm{i}}}=0.3{\rm{MPa}}\). Additionally, \({\bar{\delta }}_{\max }\) exhibits a negative dependence on \({K}_{{\rm{c}}}\). For a given \({V}_{{\rm{d}}}/{V}_{{\rm{p}}}\), the higher \({K}_{{\rm{c}}}\) the lower \({\bar{\delta }}_{\max }\).