Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Freezing droplet ejection by spring-like elastic pillars

Abstract

Preventing water droplet accretion on surfaces is fundamentally interesting and practically important. Water droplets at room temperature can spontaneously detach from surfaces through texture design or coalescence-induced surface-to-kinetic energy transformation. However, under freezing conditions, these strategies become ineffective owing to the stronger droplet–surface interaction and the lack of an energy transformation pathway. Leveraging water volume expansion during freezing, we report a structured elastic surface with spring-like pillars and wetting contrast that renders the spontaneous ejection of freezing water droplets, regardless of their impacting locations. The spring-like pillars can store the work done by the seconds-long volume expansion of freezing droplets as elastic energy and then rapidly release it as kinetic energy within milliseconds. The three-orders-of-magnitude reduction in timescales leads to sufficient kinetic energy to drive freezing droplet ejection. We develop a theoretical model to elucidate the factors determining the successful onset of this phenomenon. Our design is potentially scalable in manufacturing through a numbering-up strategy, opening up applications in deicing, soft robotics and power generation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of the structured elastic surface.
Fig. 2: Comparison of the freezing droplet behaviors on SES and control samples.
Fig. 3: Characterization and theoretical modeling of the dynamic interactions between the freezing droplet and the SES.
Fig. 4: Phase diagram of the freezing droplet ejection on SES and practical application.

Similar content being viewed by others

Data availability

All data are available in the Article and its Supplementary Information. Source data are provided with this paper.

Code availability

Code is available from the corresponding authors upon reasonable request.

References

  1. Xu, W. et al. A droplet-based electricity generator with high instantaneous power density. Nature 578, 392–396 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Boreyko, J. B. & Chen, C.-H. Self-propelled dropwise condensate on superhydrophobic surfaces. Phys. Rev. Lett. 103, 184501 (2009).

    Article  PubMed  Google Scholar 

  3. Geyer, F. et al. When and how self-cleaning of superhydrophobic surfaces works. Sci. Adv. 6, eaaw9727 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kreder, M. J., Alvarenga, J., Kim, P. & Aizenberg, J. Design of anti-icing surfaces: smooth, textured or slippery? Nat. Rev. Mater. 1, 15003 (2016).

    Article  CAS  Google Scholar 

  5. Lv, J., Song, Y., Jiang, L. & Wang, J. Bio-inspired strategies for anti-icing. ACS Nano 8, 3152–3169 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Barthlott, W. & Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8 (1997).

    Article  CAS  Google Scholar 

  7. Bohn, H. F. & Federle, W. Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proc. Natl Acad. Sci. USA 101, 14138–14143 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wong, T.-S. et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443–447 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Wisdom, K. M. et al. Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate. Proc. Natl Acad. Sci. USA 110, 7992–7997 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kasahara, M. et al. Liquid marbles in nature: craft of aphids for survival. Langmuir 35, 6169–6178 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Liu, Y. et al. Pancake bouncing on superhydrophobic surfaces. Nat. Phys. 10, 515–519 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mukherjee, R., Berrier, A. S., Murphy, K. R., Vieitez, J. R. & Boreyko, J. B. How surface orientation affects jumping-droplet condensation. Joule 3, 1360–1376 (2019).

    Article  Google Scholar 

  13. Bird, J. C., Dhiman, R., Kwon, H.-M. & Varanasi, K. K. Reducing the contact time of a bouncing drop. Nature 503, 385–388 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Schutzius, T. M. et al. Spontaneous droplet trampolining on rigid superhydrophobic surfaces. Nature 527, 82–85 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Richard, D., Clanet, C. & Quéré, D. Contact time of a bouncing drop. Nature 417, 811–811 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Gauthier, A., Symon, S., Clanet, C. & Quéré, D. Water impacting on superhydrophobic macrotextures. Nat. Commun. 6, 8001 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Boinovich, L. B., Emelyanenko, A. M., Ivanov, V. K. & Pashinin, A. S. Durable icephobic coating for stainless steel. ACS Appl. Mater. Interfaces 5, 2549–2554 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Boinovich, L. B. & Emelyanenko, A. M. Anti-icing potential of superhydrophobic coatings. Mendeleev Commun. 1, 3–10 (2013).

    Article  Google Scholar 

  19. Graeber, G., Schutzius, T. M., Eghlidi, H. & Poulikakos, D. Spontaneous self-dislodging of freezing water droplets and the role of wettability. Proc. Natl Acad. Sci. USA 114, 11040–11045 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Golovin, K., Dhyani, A., Thouless, M. & Tuteja, A. Low–interfacial toughness materials for effective large-scale deicing. Science 364, 371–375 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Golovin, K. & Tuteja, A. A predictive framework for the design and fabrication of icephobic polymers. Sci. Adv. 3, e1701617 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Irajizad, P., Hasnain, M., Farokhnia, N., Sajadi, S. M. & Ghasemi, H. Magnetic slippery extreme icephobic surfaces. Nat. Commun. 7, 13395 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang, S. et al. Photothermal superhydrophobic copper nanowire assemblies: fabrication and deicing/defrosting applications. Int. J. Extreme Manuf. 5, 045501 (2023).

    Article  CAS  Google Scholar 

  24. Kim, P. et al. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS Nano 6, 6569–6577 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Liu, K. et al. Janus effect of antifreeze proteins on ice nucleation. Proc. Natl Acad. Sci. USA 113, 14739–14744 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bi, Y., Cao, B. & Li, T. Enhanced heterogeneous ice nucleation by special surface geometry. Nat. Commun. 8, 15372 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu, S. et al. Heterogeneous ice nucleation correlates with bulk-like interfacial water. Sci. Adv. 5, eaat9825 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jung, S. et al. Are superhydrophobic surfaces best for icephobicity? Langmuir 27, 3059–3066 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Lambley, H. et al. Freezing-induced wetting transitions on superhydrophobic surfaces. Nat. Phys. 19, 649–655 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang, S. et al. Condensation frosting and passive anti-frosting. Cell Rep. Phys. Sci. 2, 100474 (2021).

  31. Knopf, D. A. & Alpert, P. A. Atmospheric ice nucleation. Nat. Rev. Phys. 5, 203–217 (2023).

    Article  CAS  Google Scholar 

  32. Chu, F. et al. Interfacial ice sprouting during salty water droplet freezing. Nat. Commun. 15, 2249 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jung, S., Tiwari, M. K., Doan, N. V. & Poulikakos, D. Mechanism of supercooled droplet freezing on surfaces. Nat. Commun. 3, 615 (2012).

    Article  PubMed  Google Scholar 

  34. Mills, A. The freezing bomb. Phys. Educ. 45, 153 (2010).

    Article  Google Scholar 

  35. Page, R. M. Sporangium discharge in Pilobolus: a photographic study. Science 146, 925–927 (1964).

    Article  CAS  PubMed  Google Scholar 

  36. Money, N. P. in The Fungi (Third Edition) (eds Watkinson, S. C., Boddy, L. & Money, N. P.) 67–97 (Academic Press, 2016).

  37. Raraty, L. & Tabor, D. The adhesion and strength properties of ice. Proc. Math. Phys. Eng. Sci. 245, 184–201 (1958).

    Google Scholar 

  38. Luo, D. et al. Autonomous self-burying seed carriers for aerial seeding. Nature 614, 463–470 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, W. et al. Honeybee comb-inspired stiffness gradient-amplified catapult for solid particle repellency. Nat. Nanotechnol. 19, 219–225 (2023).

  40. Griffith, A. A. VI. The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. A 221, 163–198 (1921).

    Google Scholar 

  41. Yao, H. & Zhang, C. A generalized solution to the combo-crack problem—I. Pressure load on crack surface. J. Mech. Phys. Solids 159, 104783 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Research Grants Council of Hong Kong (no. 15237824, Z.W.; no. SRFS2223-1S01, Z.W.; no. C1006-20W, Z.W.; no. 11218321, Z.W.; no. 11219219, Z.W.), the Tencent Foundation through the XPLORER PRIZE (Z.W.) and the Meituan Foundation through the Green Tech Award (Z.W.).

Author information

Authors and Affiliations

Authors

Contributions

Z.W. and H.Z. conceived the research. Z.W. and H.Y. supervised the research. H.Z., Y.J. and C.W. prepared the samples. H.Z., Y.J., C.W., and Z.X. designed and carried out the experiments. H.Z., S.Y., S.G. and F.L. analyzed the data. H.Y., H.Z. and W.Z. developed the theoretical modeling. Z.W., H.Y., W.Z., H.Z. and S.W. wrote the manuscript. All authors reviewed and approved the data.

Corresponding authors

Correspondence to Haimin Yao or Zuankai Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Jonathan Boreyko and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Energy conversion for spore dispersal in the fungus (Pilobolus kleinii).

a, Photograph of the fungus (Pilobolus kleinii). Reproduced with permission from36. Copyright 2016 Elsevier. b, Snapshots showing the spore dispersal behavior of the fungus driven by the conversion of elastic-to-kinetic energy. Reproduced with permission from36. Copyright 2016 Elsevier. c, Schematics of the mechanism of the energy conversion process in the fungus.

Extended Data Fig. 2 Fabrication and mechanical characterization of the SES.

a, Schematic illustration of the fabrication process of the SES. We fabricate the SES using the cast-molding method based on the 3D-printed masters. d and h, the diameter and height of the micropattern; w, the center-to-center spacing between the micro patterns; \({h}_{{\rm{p}}}\), the height of the pillar; \({R}_{{\rm{b}}}\), the radius of the smooth base. b, Compression tests of SES made of PDMS with different base/cross-linker ratios by weight. The compressive modulus (Kc) equals the stress value when the strain reaches 1.

Extended Data Fig. 3 Contact angle characterization.

Contact angle of the water droplet on the SES.

Extended Data Fig. 4 Schematic of the experimental setup for the freezing droplet ejection.

The droplet on the SES is cooled down by the chilly air circulated at ~1 m/s within an isothermal environmental chamber (~−15 °C).

Extended Data Fig. 5 Optical and thermographic imaging of the water droplet freezing process on the SES sample.

The uniform temperature distribution within the SES illustrates that the droplet is cooled down by the circulated chilly air in the isothermal chamber.

Extended Data Fig. 6 Influence of freezing conditions on pillar dynamics.

Real-time compression ratio of the pillar under two different freezing conditions, −15 °C and −5 °C.

Source data

Extended Data Fig. 7 The dynamic competition between the pressure-bearing capacity of the ice shell Pi and the internal pressure Pp.

Here \({\phi }_{0}^{* }\) denotes the critical value of the fraction of the solidified water (\({\phi }_{0}\)), whereby the ice shell will not fracture in the subsequent compression-rebound cycle.

Extended Data Fig. 8 The maximal compression ratio \({\overline{\delta }}_{\max }\) as a function of the volume ratio of a droplet to a pillar Vd/Vp under different Kc.

It can be found that \({\bar{\delta }}_{\max }\) first increases as \({V}_{{\rm{d}}}/{V}_{{\rm{p}}}\) increases and then reaches a plateau of 1. Here, the fracture strength of ice is taken as \({\sigma }_{{\rm{i}}}=0.3{\rm{MPa}}\). Additionally, \({\bar{\delta }}_{\max }\) exhibits a negative dependence on \({K}_{{\rm{c}}}\). For a given \({V}_{{\rm{d}}}/{V}_{{\rm{p}}}\), the higher \({K}_{{\rm{c}}}\) the lower \({\bar{\delta }}_{\max }\).

Extended Data Fig. 9 Theoretical modeling for determining the maximum traction force between the freezing droplet and the base.

a, Schematics showing a snapshot of the separation process between a freezing droplet and the base of SES. b, The variation of the normalized traction force \({(F}_{{\rm{t}}}/\uppi {R}_{{\rm{p}}}^{2}{P}_{{\rm{atm}}})\) with the radius ratio between the inner and outer contact edges for different \({R}_{{\rm{b}}}/{R}_{{\rm{p}}}\). Here, the normalized fracture toughness of the interface was assumed as \(\frac{{{\mathscr{K}}}_{{\rm{Ic}}}}{{P}_{{\rm{atm}}}\sqrt{{R}_{{\rm{p}}}}\,}=0.5\) with \({{\mathscr{K}}}_{{\rm{Ic}}}\) being the critical stress intensity factor for interfacial delamination. c, Dependence of the maximum normalized traction force (the peak values on the curves in b\()\) on the radius ratio between the base and pillar \(({R}_{{\rm{b}}}/{R}_{{\rm{p}}})\).

Extended Data Table 1 The mechanical characterization of the SES made of PDMS with different base/cross-linker ratios by weight

Supplementary information

Supplementary Video 1

Ejection behavior of the freezing water droplet on the SES under isothermal freezing conditions, inspired by a fungus.

Supplementary Video 2

Synchronous thermographic and optical imaging of the freezing process of a water droplet on the SES. The uniform temperature distribution (at this scale) illustrates that the droplet is cooled down by the circulated chilly air in the isothermal chamber.

Supplementary Video 3

Comparison of droplet ejection behaviors under two different freezing conditions: –15 °C and –5 °C.

Supplementary Video 4

Demonstration of chain ejection capability of the SES.

Supplementary Video 5

Scalability demonstration of 3 × 3 SES arrays where nine droplets are ejected from the surface to reduce residual ice.

Supplementary Video 6

Absence of ejection behavior of the water droplet on the SES under bottom-up freezing conditions.

Source data

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Source Data Extended Data Fig./Table 6

Source data for Extended Data Fig. 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhang, W., Jin, Y. et al. Freezing droplet ejection by spring-like elastic pillars. Nat Chem Eng 1, 765–773 (2024). https://doi.org/10.1038/s44286-024-00150-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44286-024-00150-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing