Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tuning nitrate reduction reaction selectivity via selective adsorption in electrified membranes

Abstract

Improving electrochemical reactions by manipulating the properties of catalyst active sites often involves tradeoffs in activity, selectivity, stability and material costs. Here we incorporate a nitrite-adsorbing ionophore as a cooperative nitrite-enriching component into an electrified membrane to achieve high nitrate conversion (94.6%) and ammonia selectivity (91.9%) with a treatment time of only a few seconds (6 s). The ionophore enriched nitrite within the local electrocatalyst environment, facilitating conversion of unreacted nitrite to ammonia to inhibit overall nitrite formation (1.1%) without directly modifying the catalytic active sites. Integrating the ionophore as a selective adsorption component into a copper/carbon nanotube-based electrified membrane led to long-term selective ammonia production from low-concentration nitrate in real surface water and wastewater effluent without using precious metals. The concept of employing cooperative adsorption components to manipulate the local electrocatalyst environment and control reaction selectivity without precious metals or complex synthesis, especially when coupled with the stability and efficiency of scalable electrified membranes, could be extended to advance diverse electrocatalytic applications beyond nitrate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of TTM-CuNP/CNT-EM.
Fig. 2: Mechanistic investigation of TTM ionophore in nitrite adsorption/desorption and its impact on nitrate reduction product selectivity.
Fig. 3: Nitrite binding models on CuNP and TTM.
Fig. 4: Electrochemical nitrate reduction performance of the TTM-CuNP/CNT-EM for practical applications.
Fig. 5: Preliminary techno-economic analysis.

Similar content being viewed by others

Data availability

All data are presented in the article and its Supplementary Information. Source data are provided with this paper, including the atomic coordinates of the optimized computational models.

Code availability

The code for generating Fig. 3d,e in the study is publicly available on GitHub at https://github.com/yyan107/Cu_TTM.

References

  1. Wu, Z.-Y. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 12, 2870 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen, F.-Y. et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 17, 759–767 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Harmon, N. J., Li, J., Wang, B. T., Gao, Y. & Wang, H. Influence of carbon nanotube support on electrochemical nitrate reduction catalyzed by cobalt phthalocyanine molecules. ACS Catal. 14, 3575–3581 (2024).

    Article  CAS  Google Scholar 

  4. Rezayi, M. et al. Titanium(III) cation selective electrode based on synthesized tris(2pyridyl) methylamine ionophore and its application in water samples. Sci. Rep. 4, 4664 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cánovas, R., Padrell Sánchez, S., Parrilla, M., Cuartero, M. & Crespo, G. A. Cytotoxicity study of ionophore-based membranes: toward on-body and in vivo ion sensing. ACS Sens. 4, 2524–2535 (2019).

    Article  PubMed  Google Scholar 

  6. Garcia-Segura, S., Lanzarini-Lopes, M., Hristovski, K. & Westerhoff, P. Electrocatalytic reduction of nitrate: fundamentals to full-scale water treatment applications. Appl. Catal. B 236, 546–568 (2018).

    Article  CAS  Google Scholar 

  7. Li, P. et al. Pulsed nitrate-to-ammonia electroreduction facilitated by tandem catalysis of nitrite intermediates. J. Am. Chem. Soc. 145, 6471–6479 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Néel, B. et al. Nitrite-selective electrode based on cobalt(II) tert-butyl-salophen ionophore. Electroanalysis 26, 473–480 (2014).

    Article  Google Scholar 

  9. Pennino, M. J., Leibowitz, S. G., Compton, J. E., Hill, R. A. & Sabo, R. D. Patterns and predictions of drinking water nitrate violations across the conterminous United States. Sci. Total Environ. 722, 137661 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. C. D’Angelo, S. et al. Environmental and economic potential of decentralised electrocatalytic ammonia synthesis powered by solar energy. Energy Environ. Sci. 16, 3314–3330 (2023).

    Article  Google Scholar 

  11. van Langevelde, P. H., Katsounaros, I. & Koper, M. T. Electrocatalytic nitrate reduction for sustainable ammonia production. Joule 5, 290–294 (2021).

    Article  Google Scholar 

  12. Duca, M. & Koper, M. T. Powering denitrification: the perspectives of electrocatalytic nitrate reduction. Energy Environ. Sci. 5, 9726–9742 (2012).

    Article  CAS  Google Scholar 

  13. Gayen, P. et al. Electrocatalytic reduction of nitrate using magnéli phase TiO2 reactive electrochemical membranes doped with Pd-based catalysts. Environ. Sci. Technol. 52, 9370–9379 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Li, Y., Ma, J., Waite, T. D., Hoffmann, M. R. & Wang, Z. Development of a mechanically flexible 2D-MXene membrane cathode for selective electrochemical reduction of nitrate to N2: mechanisms and implications. Environ. Sci. Technol. 55, 10695–10703 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Sun, M. et al. Electrified membranes for water treatment applications. ACS EST Eng. 1, 725–752 (2021).

    Article  CAS  Google Scholar 

  16. Sarycheva, A. & Gogotsi, Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 32, 3480–3488 (2020).

    Article  CAS  Google Scholar 

  17. Goh, G. L. et al. Potential of printed electrodes for electrochemical impedance spectroscopy (EIS): toward membrane fouling detection. Adv. Electron. Mater. 7, 2100043 (2021).

    Article  CAS  Google Scholar 

  18. Ren, G. et al. Membrane electrodes for electrochemical advanced oxidation processes: preparation, self-cleaning mechanisms and prospects. Chem. Eng. J. 451, 138907 (2023).

    Article  CAS  Google Scholar 

  19. Sun, J., Hu, C., Wu, B. & Qu, J. Fouling mitigation of a graphene hydrogel membrane electrode by electrical repulsion and in situ self-cleaning in an electro-membrane reactor. Chem. Eng. J. 393, 124817 (2020).

    Article  CAS  Google Scholar 

  20. Wu, D. et al. Self-healable metal–organic gel membranes as anodes with high lithium storage. Electrochim. Acta 386, 138334 (2021).

    Article  CAS  Google Scholar 

  21. Xu, Y.-T., Xie, M.-Y., Zhong, H. & Cao, Y. In situ clustering of single-atom copper precatalysts in a metal–organic framework for efficient electrocatalytic nitrate-to-ammonia reduction. ACS Catal. 12, 8698–8706 (2022).

    Article  CAS  Google Scholar 

  22. Niu, Z. et al. Bifunctional copper-cobalt spinel electrocatalysts for efficient tandem-like nitrate reduction to ammonia. Chem. Eng. J. 450, 138343 (2022).

    Article  CAS  Google Scholar 

  23. Zhao, X. et al. Boosting the selectivity and efficiency of nitrate reduction to ammonia with a single-atom Cu electrocatalyst. Chem. Eng. J. 466, 143314 (2023).

    Article  CAS  Google Scholar 

  24. Gupta, S., Rivera, D. J., Shaffer, M., Chismar, A. & Muhich, C. Behavior of cupric single atom alloy catalysts for electrochemical nitrate reduction: an ab initio study. ACS EST Eng. 4, 166–175 (2024).

    Article  CAS  Google Scholar 

  25. Huang, Y. et al. Real-time in situ monitoring of nitrogen dynamics in wastewater treatment processes using wireless, solid-state, and ion-selective membrane sensors. Environ. Sci. Technol. 53, 3140–3148 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Gupta, S., Chismar, A., Shaffer, M., Rivera, D. J. & Muhich, C. Surface phenomenon affecting removal efficiency of nitrate from water on dispersed single atoms in Cu metal catalyst: an ab-initio study. in Proc. 2022 AIChE Annual Meeting (AIChE, 2022).

  27. Tran, R. et al. Surface energies of elemental crystals. Sci. Data 3, 1–13 (2016).

    Article  Google Scholar 

  28. Pérez-Gallent, E., Figueiredo, M. C., Katsounaros, I. & Koper, M. T. Electrocatalytic reduction of nitrate on copper single crystals in acidic and alkaline solutions. Electrochim. Acta 227, 77–84 (2017).

    Article  Google Scholar 

  29. Fan, Y. et al. Highly efficient metal-free nitrate reduction enabled by electrified membrane filtration. Nat. Water 2, 684–696 (2024).

    Article  CAS  Google Scholar 

  30. Yang, X. et al. MXene-Cu electrified membranes with confined lamellar channels for the flow-through electrochemical reduction of nitrate to ammonia. ACS Sustain. Chem. Eng. 12, 3378–3389 (2024).

    Article  CAS  Google Scholar 

  31. Ren, Y. et al. Fluidic MXene electrode functionalized with iron single atoms for selective electrocatalytic nitrate transformation to ammonia. Environ. Sci. Technol. 57, 10458–10466 (2023).

    Article  CAS  PubMed  Google Scholar 

  32. Chen, M. et al. Bi2O3 nanosheets arrays in-situ decorated on carbon cloth for efficient electrochemical reduction of nitrate. Chemosphere 278, 130386 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Xu, Y. et al. Cooperativity of Cu and Pd active sites in CuPd aerogels enhances nitrate electroreduction to ammonia. Chem. Commun. 57, 7525–7528 (2021).

    Article  CAS  Google Scholar 

  34. Cerrón-Calle, G. A., Fajardo, A. S., Sánchez-Sánchez, C. M. & Garcia-Segura, S. Highly reactive Cu–Pt bimetallic 3D-electrocatalyst for selective nitrate reduction to ammonia. Appl. Catal. B 302, 120844 (2022).

    Article  Google Scholar 

  35. Wang, K. et al. Intentional corrosion-induced reconstruction of defective NiFe layered double hydroxide boosts electrocatalytic nitrate reduction to ammonia. Nat. Water 1, 1068–1078 (2023).

    Article  CAS  Google Scholar 

  36. Zhang, Y., Chen, X., Wang, W., Yin, L. & Crittenden, J. C. Electrocatalytic nitrate reduction to ammonia on defective Au1Cu(111) single-atom alloys. Appl. Catal. B Environ. 310, 121346 (2022).

    Article  CAS  Google Scholar 

  37. Vaziri Rad, M. A., Kasaeian, A., Niu, X., Zhang, K. & Mahian, O. Excess electricity problem in off-grid hybrid renewable energy systems: a comprehensive review from challenges to prevalent solutions. Renew. Energy 212, 538–560 (2023).

    Article  Google Scholar 

  38. Wang, X. et al. Free-standing membrane incorporating single-atom catalysts for ultrafast electroreduction of low-concentration nitrate. Proc. Natl Acad. Sci. USA 120, e2217703120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Für Phys. 155, 206–222 (1959).

    Article  CAS  Google Scholar 

  40. Shao, Y., Ying, Y. & Ping, J. Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chem. Soc. Rev. 49, 4405–4465 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Le, T. X. H., Haflich, H., Shah, A. D. & Chaplin, B. P. Energy-efficient electrochemical oxidation of perfluoroalkyl substances using a Ti4O7 reactive electrochemical membrane anode. Environ. Sci. Technol. Lett. 6, 504–510 (2019).

    Article  CAS  Google Scholar 

  42. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  43. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  44. Mathew, K., Sundararaman, R., Letchworth-Weaver, K., Arias, T. A. & Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014).

    Article  PubMed  Google Scholar 

  45. Mathew, K., Kolluru, V. S., Mula, S., Steinmann, S. N. & Hennig, R. G. Implicit self-consistent electrolyte model in plane-wave density-functional theory. J. Chem. Phys. 151, 234101 (2019).

    Article  PubMed  Google Scholar 

  46. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  PubMed  Google Scholar 

  47. Lide, D. R. & Kehiaian, H. V. CRC Handbook of Thermophysical and Thermochemical Data (CRC Press, 2020).

  48. Yan, Y., Masood, Z. & Wang, B. Lanthanum-doped graphene for electrocatalytic reduction of nitrogen monoxide. J. Phys. Chem. C 127, 12967–12975 (2023).

    Article  CAS  Google Scholar 

  49. Chan, K. & Nørskov, J. K. Electrochemical barriers made simple. J. Phys. Chem. Lett. 6, 2663–2668 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Chan, K. & Nørskov, J. K. Potential dependence of electrochemical barriers from ab initio calculations. J. Phys. Chem. Lett. 7, 1686–1690 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Zhao, Q., Martirez, J. M. P. & Carter, E. A. Revisiting understanding of electrochemical CO2 reduction on Cu(111): competing proton-coupled electron transfer reaction mechanisms revealed by embedded correlated wavefunction theory. J. Am. Chem. Soc. 143, 6152–6164 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Gordon, M. S. & Schmidt, M. W. in Theory and Applications of Computational Chemistry (eds Dykstra, C. E. et al.) Ch. 14 (Elsevier, 2005).

  53. Bode, B. M. & Gordon, M. S. MacMolPlt: a graphical user interface for GAMESS. J. Mol. Graph. Model. 16, 133–138 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994).

    Article  CAS  Google Scholar 

  55. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  56. Cossi, M., Rega, N., Scalmani, G. & Barone, V. Energies, structures, and electronic properties of molecules in solution with the C‐PCM solvation model. J. Comput. Chem. 24, 669–681 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Barone, V. & Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 102, 1995–2001 (1998).

    Article  CAS  Google Scholar 

  58. Nwokonkwo, O., Pelletier, V., Broud, M. & Muhich, C. Functionalized ferrocene enables selective electrosorption of arsenic oxyanions over phosphate—a DFT examination of the effects of substitutional moieties, pH, and oxidation State. J. Phys. Chem. A 127, 7727–7738 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gani, T. Z. H., Ioannidis, E. I. & Kulik, H. J. Computational discovery of hydrogen bond design rules for electrochemical ion separation. Chem. Mater. 28, 6207–6218 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (grant no. EEC-1449500 to L.R.W.). The computations were conducted through the Arizona State University research computing environment. We thank Y. Duan (Yale University) for discussions on electrofiltration mechanisms.

Author information

Authors and Affiliations

Authors

Contributions

Y.F., X.W. and L.R.W. conceived of the idea and designed the experiments. L.R.W. supervised the project. Y.F., E.C. and J.S. fabricated the membranes. Y.F., E.C., J.S., J.-Y.K., M.S.-M. and W.P. performed the membrane tests and analyzed the results. Y.F., Y.Y., O.N., D.J.R. and C.M. carried out the DFT calculations and analysis. Y.F., Y.Y. and L.R.W. wrote the paper. All authors discussed the results and revised the paper.

Corresponding author

Correspondence to Lea R. Winter.

Ethics declarations

Competing interests

Y.F. and L.R.W. are listed as coinventors on International Patent Application No. PCT/US25/27226 filed on 1 May 2025, submitted by Yale University, which covers the coupling electrofiltration with a cooperative nitrite-enriching component for nitrate reduction as described in this paper. The other authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Bryan Goldsmith and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–33, Tables 1–9 and Notes 1–4.

Supplementary Data 1

Atomic coordinates of the optimized computational models for CuNP in Fig. 3c.

Supplementary Data 2

Atomic coordinates of the optimized computational models for TTM in Fig. 3c.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Yan, Y., Nwokonkwo, O. et al. Tuning nitrate reduction reaction selectivity via selective adsorption in electrified membranes. Nat Chem Eng 2, 379–390 (2025). https://doi.org/10.1038/s44286-025-00237-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44286-025-00237-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing