Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrathin membranes prepared through interfacial polymer cross-linking for selective and fast ion transport

Abstract

Ion-selective membranes are widely used in water treatment and batteries. However, it is challenging to obtain membranes that are both selective and permeable. Here, we report an interfacial polymer cross-linking strategy to produce ultrathin but robust polymeric membranes that are simultaneously permeable and selective. Cross-linking the polymer at the interface of two immiscible solvents followed by nonsolvent exchange produces a 3-µm-thick ultrathin membrane that contains a nanoscale separation layer with a quasi-ordered reticular cross-linking structure. Besides conferring strength, the cross-linked structures have angstrom-scale channels and ion-selective sites that can precisely separate ions of similar sizes and charges. We show that these membranes enable increased working current density and power density of various aqueous flow batteries. This strategy resolves a long-standing challenge in polymeric membranes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fabrication route and structure of the 3-μm-thick polymeric membranes.
Fig. 2: Structures and stability of cross-linked PT membranes.
Fig. 3: Transport properties and mechanism of the PT membranes.
Fig. 4: PT membranes improve the performance of various aqueous flow batteries.

Similar content being viewed by others

Data availability

All the data supporting the results in this study are available within the Article and its Supplementary Information. Source data are provided with this paper.

References

  1. Joseph, N., Ahmadiannamini, P., Hoogenboom, R. & Vankelecom, J. Layer-by-layer preparation of polyelectrolyte multilayer membranes for separation. Polym. Chem. 5, 1817–1831 (2014).

    Article  CAS  Google Scholar 

  2. Chen, G. et al. Zeolites and metal–organic frameworks for gas separation: the possibility of translating adsorbents into membranes. Chem. Soc. Rev. 52, 4586–4602 (2023).

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, H., He, Q., Luo, J., Wan, Y. & Darling, S. B. Sharpening nanofiltration: strategies for enhanced membrane selectivity. ACS Appl. Mater. Interfaces 12, 39948–39966 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Geise, G. M. Why polyamide reverse-osmosis membranes work so well. Science 371, 31–32 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Culp, T. E. et al. Nanoscale control of internal inhomogeneity enhances water transport in desalination membranes. Science 371, 72–75 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Uliana, A. A. et al. Ion-capture electrodialysis using multifunctional adsorptive membranes. Science 372, 296–299 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Kidambi, P. R., Chaturvedi, P. & Moehring, N. K. Subatomic species transport through atomically thin membranes: present and future applications. Science 374, 708 (2021).

    Article  Google Scholar 

  8. Chen, G. et al. Solid-solvent processing of ultrathin, highly loaded mixed-matrix membrane for gas separation. Science 381, 1350–1356 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Datta, S. et al. Rational design of mixed-matrix metal-organic framework membranes for molecular separations. Science 376, 1080–1087 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Qian, Q. et al. MOF-based membranes for gas separations. Chem. Rev. 120, 8161–8266 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Tan, X. et al. Truly combining the advantages of polymeric and zeolite membranes for gas separations. Science 378, 1189–1194 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Robeson, L. M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 62, 165–185 (1991).

    Article  CAS  Google Scholar 

  13. Wang, A. et al. Selective ion transport through hydrated micropores in polymer membranes. Nature 635, 353–358 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang, T. et al. Molecularly-porous ultrathin membranes for highly selective organic solvent nanofiltration. Nat. Commun. 11, 5882 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Karan, S., Jiang, Z. & Livingston, A. G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 348, 1347–1351 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, S. et al. Ultrathin membranes for separations: a new era driven by advanced nanotechnology. Adv. Mater. 34, 2108457 (2022).

    Article  CAS  Google Scholar 

  17. Jiang, Z. et al. Aligned macrocycle pores in ultrathin films for accurate molecular sieving. Nature 609, 58–64 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sandru, M. et al. An integrated materials approach to ultrapermeable and ultraselective CO2 polymer membranes. Science 376, 90–94 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Sengupta, B. et al. Carbon-doped metal oxide interfacial nanofilms for ultrafast and precise separation of molecules. Science 381, 1098–1104 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Gao, S., Wang, D., Fang, W. & Jin, J. Ultrathin membranes: a new opportunity for ultrafast and efficient separation. Adv. Mater. Technol. 5, 1901069 (2020).

    Article  CAS  Google Scholar 

  21. Sarkar, P., Wu, C., Yang, Z. & Tang, C. Y. Empowering ultrathin polyamide membranes at the water–energy nexus: strategies, limitations, and future perspectives. Chem. Soc. Rev. 53, 4374–4399 (2024).

    Article  CAS  PubMed  Google Scholar 

  22. Lu, X. & Elimelech, M. Fabrication of desalination membranes by interfacial polymerization: history, current efforts, and future directions. Chem. Soc. Rev. 50, 6290–6307 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Choi, J. et al. Thin film composite membranes as a new category of alkaline water electrolysis membranes. Small 19, 2300825 (2023).

    Article  CAS  Google Scholar 

  24. Huang, L. & McCutcheon, J. R. Impact of support layer pore size on performance of thin film composite membranes for forward osmosis. J. Membr. Sci. 483, 25–33 (2015).

    Article  CAS  Google Scholar 

  25. Xia, Y. et al. Polymeric membranes with aligned zeolite nanosheets for sustainable energy storage. Nat. Sustain. 5, 1080–1091 (2022).

    Article  Google Scholar 

  26. Wu, J., Dai, Q., Zhang, H. & Li, X. A defect-free MOF composite membrane prepared via in-situ binder-controlled restrained second-growth method for energy storage device. Energy Stor. Mater. 35, 687–694 (2021).

    Google Scholar 

  27. Zhu, J. et al. A molecular-sieve electrolyte membrane enables separator-free zinc batteries with ultralong cycle life. Adv. Mater. 34, 2207209 (2022).

    Article  CAS  Google Scholar 

  28. Tang, L., Li, T., Lu, W. & Li, X. Lamella-like electrode with high Br2-entrapping capability and activity enabled by adsorption and spatial confinement effects for bromine-based flow battery. Sci. Bull. 67, 1362–1371 (2022).

    Article  CAS  Google Scholar 

  29. Hu, J., Zhang, H., Xu, W., Yuan, Z. & Li, X. Mechanism and transfer behavior of ions in Nafion membranes under alkaline media. J. Membr. Sci. 566, 8–14 (2018).

    Article  CAS  Google Scholar 

  30. Hu, J. et al. Layered double hydroxide membrane with high hydroxide conductivity and ion selectivity for energy storage device. Nat. Commun. 12, 3409 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhao, Q. H. et al. A new digital positron annihilation lifetime spectrometer for a single piece of micron-thickness film. Nuclear Inst. Methods Phys. Res. A. 1038, 166921 (2022).

    Article  CAS  Google Scholar 

  32. Zuo, P. et al. Near-frictionless ion transport within triazine framework membranes. Nature 617, 299–305 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang, Q. et al. Covalent organic framework–based porous ionomers for high-performance fuel cells. Science 378, 181–186 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Dai, Q. et al. High-performance PBI membranes for flow batteries: from the transport mechanism to the pilot plant. Energy Environ. Sci. 15, 1594–1600 (2022).

    Article  CAS  Google Scholar 

  35. Zhang, M., Li, T., Liu, X., Zhang, C. & Li, X. Molecular revealing the high-stable polycyclic azine derivatives for long-lifetime aqueous organic flow batteries. Adv. Funct. Mater. 34, 2312608 (2024).

    Article  CAS  Google Scholar 

  36. Liu, Y. et al. Sustainable polyester thin films for membrane desalination developed through interfacial catalytic polymerization. Nat. Water 3, 430–438 (2025).

    Article  CAS  Google Scholar 

  37. Chen, Y. W. et al. A non-beam-based Doppler broadening of positron annihilation radiation (DBAR) spectrometer for a single piece of micron-thickness film. Nucl. Instrum. Methods Phys. Res. A 1063, 169286 (2024).

    Article  CAS  Google Scholar 

  38. Kansy, J. Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl. Instrum. Methods Phys. Res. 374, 235–244 (1996).

    Article  CAS  Google Scholar 

  39. Shukla, A., Peter, M. & Hoffmann, L. Analysis of positron lifetime spectra using quantified maximum entropy and a general linear filter. Nucl. Instrum. Methods Phys. Res. A 335, 310–317 (1993).

    Article  CAS  Google Scholar 

  40. Case, D. et al. AMBER 2018 (Univ. California, 2018).

  41. Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).

    Article  PubMed  Google Scholar 

  42. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general AMBER force field. J. Comput. Chem. 25, 1157–1174 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Frisch, M. et al. Gaussian 16 Rev. B.01 (Wallingford, 2016).

  44. Berendsen, H. J. C., Vanderspoel, D. & Vandrunen, R. Gromacs—a message-passing parallel molecular-dynamics implementation. Comput. Phys. Commun. 91, 43–56 (1995).

    Article  CAS  Google Scholar 

  45. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald—an N.log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Article  CAS  Google Scholar 

  46. Roe, D. R. & Cheatham, T. E. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9, 3084–3095 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. Model. 14, 33–38 (1996).

    Article  CAS  Google Scholar 

  48. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (grant nos. 22525081 (X. Li), 21925804 (X. Li), 22379141 (W.L.) and 12275270 (H.Z.)), National Key R&D Program of China (grant no. 2022YFB2404901) (W.L.), CAS Strategic Leading Science & Technology Program (A) (grant no. XDA0400201) (X. Li) and Youth Innovation Promotion Association CAS (grant no. 2022184) (W.L.). We thank A. L. Chun of Science Storylab for valuable discussions and for critically reading and editing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

X. Liu, M.S. and W.L. conceptualized and performed the experiments and analyzed the data. C.L. carried out the simulations. N.T. performed the experiments. Y.C. performed the experiments and analyzed the data. C.D. performed the experiments. H.Z. analyzed the data. W.L. and X. Li conceptualized the experiments, conceived and supervised the entire study. X. Liu, M.S. and W.L. were involved in the development of the paper.

Corresponding authors

Correspondence to Hongjun Zhang, Wenjing Lu or Xianfeng Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Michael Aziz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Methods section, Figs. 1–73, Tables 1–7 and Refs. 1–55.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Shi, M., Liao, C. et al. Ultrathin membranes prepared through interfacial polymer cross-linking for selective and fast ion transport. Nat Chem Eng 2, 369–378 (2025). https://doi.org/10.1038/s44286-025-00238-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44286-025-00238-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing