Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Flow-driven data intensification to accelerate autonomous inorganic materials discovery

Abstract

The rapid discovery of advanced functional materials is critical for overcoming pressing global challenges in energy and sustainability. Despite recent progress in self-driving laboratories and materials acceleration platforms, their capacity to explore complex parameter spaces is hampered by low data throughput. Here we introduce dynamic flow experiments as a data intensification strategy for inorganic materials syntheses within self-driving fluidic laboratories by the continuous mapping of transient reaction conditions to steady-state equivalents. Applied to CdSe colloidal quantum dots, as a testbed, dynamic flow experiments yield at least an order-of-magnitude improvement in data acquisition efficiency and reducing both time and chemical consumption compared to state-of-the-art self-driving fluidic laboratories. By integrating real-time, in situ characterization with microfluidic principles and autonomous experimentation, a dynamic flow experiment fundamentally redefines data utilization in self-driving fluidic laboratories, accelerating the discovery and optimization of emerging materials and creating a sustainable foundation for future autonomous materials research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental setup.
Fig. 2: DFE versus SSFE.
Fig. 3: DFE-assisted SDFL operation workflow.
Fig. 4: DFE sampling results.
Fig. 5: BO campaigns targeting different peak emission wavelengths of CdSe QDs.
Fig. 6: Continuous manufacturing of CdSe QDs.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the Article and its Supplementary Information. Source data are provided with this paper.

Code availability

The source code for the autonomous experimentation and digital twin models is available via GitHub at https://github.com/AbolhasaniLab in the ‘DynamicExperimentation’ repository.

References

  1. Sadeghi, S. et al. Engineering a sustainable future: harnessing automation, robotics, and artificial intelligence with self-driving laboratories. ACS Sustain. Chem. Eng. 12, 12695–12707 (2024).

    Article  CAS  Google Scholar 

  2. Kusne, A. G., McDannald, A. & DeCost, B. Learning material synthesis–process–structure–property relationship by data fusion: Bayesian co-regionalization N-dimensional piecewise function learning. Digit. Discov. 3, 2211–2225 (2024).

    Article  CAS  Google Scholar 

  3. Schoenung, J. M., Olivetti, E. A. & Editors, G. Sustainable development of materials: broadening stakeholder engagement. MRS Bull. 48, 362–367 (2023).

    Article  Google Scholar 

  4. Stier, S. P. et al. Materials acceleration platforms (MAPs): accelerating materials research and development to meet urgent societal challenges. Adv. Mater. 36, 2407791 (2024).

    Article  CAS  Google Scholar 

  5. Delgado-Licona, F. & Abolhasani, M. Research acceleration in self‐driving labs: technological roadmap toward accelerated materials and molecular discovery. Adv. Intell. Syst. 5, 2200331 (2023).

    Article  Google Scholar 

  6. Abolhasani, M. & Kumacheva, E. The rise of self-driving labs in chemical and materials sciences. Nat. Synth. 2, 483–492 (2023).

    Article  CAS  Google Scholar 

  7. Flores-Leonar, M. M. et al. Materials acceleration platforms: on the way to autonomous experimentation. Curr. Opin. Green Sustain. Chem. 25, 100370 (2020).

    Article  Google Scholar 

  8. Canty, R. B. et al. Science acceleration and accessibility with self-driving labs. Nat. Commun. 16, 3856 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Devi, R., Butler, K. T. & Sai Gautam, G. Optimal pre-train/fine-tune strategies for accurate material property predictions. npj Comput. Mater. 10, 300 (2024).

    Article  Google Scholar 

  10. Ghosh, A. Towards physics-informed explainable machine learning and causal models for materials research. Comput. Mater. Sci. 233, 112740 (2024).

    Article  Google Scholar 

  11. Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021).

    Article  Google Scholar 

  12. Chen, A. et al. Knowledge-reused transfer learning for molecular and materials science. J. Energy Chem. 98, 149–168 (2024).

    Article  CAS  Google Scholar 

  13. Gupta, V. et al. Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data. Nat. Commun. 12, 6595 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fujinuma, N., DeCost, B., Hattrick-Simpers, J. & Lofland, S. E. Why big data and compute are not necessarily the path to big materials science. Commun. Mater. 3, 59 (2022).

    Article  Google Scholar 

  15. Hayashi, H. et al. In silico reaction screening with difluorocarbene for N-difluoroalkylative dearomatization of pyridines. Nat. Synth. 1, 804–814 (2022).

    Article  CAS  Google Scholar 

  16. McCullough, K., Williams, T., Mingle, K., Jamshidi, P. & Lauterbach, J. High-throughput experimentation meets artificial intelligence: a new pathway to catalyst discovery. Phys. Chem. Chem. Phys. 22, 11174–11196 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Schrier, J., Norquist, A. J., Buonassisi, T. & Brgoch, J. In pursuit of the exceptional: research directions for machine learning in chemical and materials science. J. Am. Chem. Soc. 145, 21699–21716 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Delgado-Licona, F., Addington, D., Alsaiari, A. & Abolhasani, M. Engineering principles for self-driving laboratories. Nat. Chem. Eng. 2, 277–280 (2025).

    Article  Google Scholar 

  19. Epps, R. W. et al. Artificial chemist: an autonomous quantum dot synthesis bot. Adv. Mater. 32, 2001626 (2020).

    Article  CAS  Google Scholar 

  20. Jha, P. et al. Photo‐induced bandgap engineering of metal halide perovskite quantum dots in flow. Adv. Mater. 37, 2419668 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu, T. et al. Self-driving lab for the photochemical synthesis of plasmonic nanoparticles with targeted structural and optical properties. Nat. Commun. 16, 1473 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Volk, A. A., Campbell, Z. S., Ibrahim, M. Y., Bennett, J. A. & Abolhasani, M. Flow chemistry: a sustainable voyage through the chemical universe en route to smart manufacturing. Annu. Rev. Chem. Biomol. Eng. 13, 45–72 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, K. et al. The importance of transport phenomena on the flow synthesis of monodispersed sharp blue-emitting perovskite CsPbBr3 nanoplatelets. Chem. Eng. J. 451, 138752 (2023).

    Article  CAS  Google Scholar 

  24. López-Guajardo, E. A. et al. Process intensification 4.0: a new approach for attaining new, sustainable and circular processes enabled by machine learning. Chem. Eng. Process. Process Intensif. 180, 108671 (2022).

    Article  Google Scholar 

  25. McMullen, J. P. & Wyvratt, B. M. Automated optimization under dynamic flow conditions. React. Chem. Eng. 8, 137–151 (2023).

    Article  CAS  Google Scholar 

  26. Hone, C. A., Holmes, N., Akien, G. R., Bourne, R. A. & Muller, F. L. Rapid multistep kinetic model generation from transient flow data. React. Chem. Eng. 2, 103–108 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Mozharov, S. et al. Improved method for kinetic studies in microreactors using flow manipulation and noninvasive Raman spectrometry. J. Am. Chem. Soc. 133, 3601–3608 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Haas, C. P., Biesenroth, S., Buckenmaier, S., van de Goor, T. & Tallarek, U. Automated generation of photochemical reaction data by transient flow experiments coupled with online HPLC analysis. React. Chem. Eng. 5, 912–920 (2020).

    Article  CAS  Google Scholar 

  29. Schrecker, L. et al. Discovery of unexpectedly complex reaction pathways for the Knorr pyrazole synthesis via transient flow. React. Chem. Eng. 8, 41–46 (2023).

    Article  CAS  Google Scholar 

  30. Aroh, K. C. & Jensen, K. F. Efficient kinetic experiments in continuous flow microreactors. React. Chem. Eng. 3, 94–101 (2018).

    Article  CAS  Google Scholar 

  31. Waldron, C. et al. Model-based design of transient flow experiments for the identification of kinetic parameters. React. Chem. Eng. 5, 112–123 (2020).

    Article  CAS  Google Scholar 

  32. Van Herck, J. et al. Operator-independent high-throughput polymerization screening based on automated inline NMR and online SEC. Digit. Discov. 1, 519–526 (2022).

    Article  Google Scholar 

  33. Van Herck, J. & Junkers, T. Rapid kinetic screening via transient timesweep experiments in continuous flow reactors. Chem. Methods 2, e202100090 (2022).

    Article  Google Scholar 

  34. Moore, J. S. & Jensen, K. F. ‘Batch’ kinetics in flow: online IR analysis and continuous control. Angew. Chem. Int. Ed. 53, 470–473 (2014).

    Article  CAS  Google Scholar 

  35. Florit, F. et al. Dynamic flow experiments for Bayesian optimization of a single process objective. React. Chem. Eng. 10, 656–666 (2025).

    Article  CAS  Google Scholar 

  36. Sagmeister, P. et al. Accelerating reaction modeling using dynamic flow experiments, part 1: design space exploration. React. Chem. Eng. 8, 2818–2825 (2023).

    Article  CAS  Google Scholar 

  37. Florit, F., Nambiar, A. M., Breen, C. P., Jamison, T. F. & Jensen, K. F. Design of dynamic trajectories for efficient and data-rich exploration of flow reaction design spaces. React. Chem. Eng. 6, 2306–2314 (2021).

    Article  CAS  Google Scholar 

  38. Wyvratt, B. M., McMullen, J. P. & Grosser, S. T. Multidimensional dynamic experiments for data-rich process development of reactions in flow. React. Chem. Eng. 4, 1637–1645 (2019).

    Article  CAS  Google Scholar 

  39. Williams, J. D., Sagmeister, P. & Kappe, C. O. Dynamic flow experiments for data-rich optimization. Curr. Opin. Green Sustain. Chem. 47, 100921 (2024).

    Article  CAS  Google Scholar 

  40. Kanaris, A. & Mouza, A. Numerical investigation of the effect of geometrical parameters on the performance of a micro-reactor. Chem. Eng. Sci. 66, 5366–5373 (2011).

    Article  CAS  Google Scholar 

  41. Klutz, S., Kurt, S. K., Lobedann, M. & Kockmann, N. Narrow residence time distribution in tubular reactor concept for Reynolds number range of 10–100. Chem. Eng. Res. Des. 95, 22–33 (2015).

    Article  CAS  Google Scholar 

  42. López-Guajardo, E., Ortiz-Nadal, E., Montesinos-Castellanos, A. & Nigam, K. D. Coiled flow inverter as a novel alternative for the intensification of a liquid-liquid reaction. Chem. Eng. Sci. 169, 179–185 (2017).

    Article  Google Scholar 

  43. Mridha, M. & Nigam, K. Coiled flow inverter as an inline mixer. Chem. Eng. Sci. 63, 1724–1732 (2008).

    Article  CAS  Google Scholar 

  44. Saxena, A. & Nigam, K. Coiled configuration for flow inversion and its effect on residence time distribution. AlChE J. 30, 363–368 (1984).

    Article  CAS  Google Scholar 

  45. Bateni, F. et al. Smart Dope: a self‐driving fluidic lab for accelerated development of doped perovskite quantum dots. Adv. Energy Mater. 14, 2302303 (2024).

    Article  CAS  Google Scholar 

  46. MacLeod, B. P. et al. A self-driving laboratory advances the Pareto front for material properties. Nat. Commun. 13, 995 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bai, Y. et al. Closed‐loop multi‐objective optimization for Cu–Sb–S photo‐electrocatalytic materials’ discovery. Adv. Mater. 36, 2304269 (2024).

    Article  CAS  Google Scholar 

  48. Osterrieder, T. et al. Autonomous optimization of an organic solar cell in a 4-dimensional parameter space. Energy Environ. Sci. 16, 3984–3993 (2023).

    Article  Google Scholar 

  49. Startt, J., McCarthy, M. J., Wood, M. A., Donegan, S. & Dingreville, R. Bayesian blacksmithing: discovering thermomechanical properties and deformation mechanisms in high-entropy refractory alloys. npj Comput. Mater. 10, 164 (2024).

    Article  CAS  Google Scholar 

  50. McKay, M. D., Beckman, R. J. & Conover, W. J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42, 55–61 (2000).

    Article  Google Scholar 

  51. Noack, M. M. et al. Autonomous materials discovery driven by Gaussian process regression with inhomogeneous measurement noise and anisotropic kernels. Sci. Rep. 10, 17663 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu, H., Cai, J., Ong, Y.-S. & Wang, Y. Understanding and comparing scalable Gaussian process regression for big data. Knowl. Based Syst. 164, 324–335 (2019).

    Article  Google Scholar 

  53. Scott, M. & Su-In, L. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 30, 4765–4774 (2017).

    Google Scholar 

  54. Murray, C., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  CAS  Google Scholar 

  55. Yang, H. et al. Continuous synthesis of full-color emitting core/shell quantum dots via microreaction. Cryst. Growth Des. 9, 4807–4813 (2009).

    Article  CAS  Google Scholar 

  56. Xue, X., Huang, Y., Zhuang, Z., Huang, F. & Lin, Z. Temperature-sensitive growth kinetics and photoluminescence properties of CdS quantum dots. Cryst. Eng. Comm. 15, 4963–4969 (2013).

    Article  CAS  Google Scholar 

  57. Epps, R. W., Volk, A. A., Abdel-Latif, K. & Abolhasani, M. An automated flow chemistry platform to decouple mixing and reaction times. React. Chem. Eng. 5, 1212–1217 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.A. gratefully acknowledges financial support from the National Science Foundation (award nos. 1940959, 2315996 and 2420490) and the University of North Carolina Research Opportunities Initiative (UNC-ROI) program.

Author information

Authors and Affiliations

Authors

Contributions

F.D.-L. and M.A. conceived the project. F.B. and A.G. modified the precursor chemistry for flow synthesis. F.D.-L. and E.A.L.-G. designed the flow reactor geometry. F.D.-L., A.A., H.D. and M.A. designed and developed the flow synthesis platform. F.D.-L. programmed the automation and closed-loop experimentation protocols under the advisement of R.B.C. and J.A.B. F.D.-L., A.A., H.D., P.K. and A.G. conducted the experiments. F.D.-L. and A.A. conducted the data analysis under the advisement of M.A. F.D.-L., A.A., P.K. and N.M. prepared the data and setup visualization figures. P.J., N.M., J.L., A.G. and S.S conducted the ex situ characterization of the in-flow-synthesized samples. F.D.-L., A.A., H.D. and M.A. drafted the manuscript. M.A. acquired funding and directed the project. All authors provided feedback on the manuscript.

Corresponding author

Correspondence to Milad Abolhasani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Adam Clayton, Jason Moore and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Dynamic vs. Steady State Flow Experiments.

Two modes of data acquisition strategies for flow reactors for material synthesis are qualitatively compared: (a) traditional Steady State Flow Experiments (SSFE) and (b) Dynamic Flow Experiments (DFE). Dashed light gray frames represent an experiment, where the residence time is increased accordingly for each strategy. On top of each experiment frame, the collected data (sensor positioned at the end of the reactor) for each experiment is displayed. DFE captures all data during the continuous experiment, while SSFE captures data only at the end of the experiment when the steady state has been reached. Lastly, all data collected, from the start of the dynamic experiment (t = 0) to the end of the dynamic experiment (tf), can be mapped to steady-state residence time conditions, presented in both sections as the position inside the reactor that would experience the expected residence time in the reactor.

Supplementary information

Supplementary Information

Supplementary Sections 1–9, Figs. 1–9, Tables 1–5 and Discussion.

Source data

Source Data Fig. 1

Raw numerical data for all plots in Fig. 1.

Source Data Fig. 2

Raw numerical data for all plots in Fig. 2.

Source Data Fig. 4

Raw numerical data for all plots in Fig. 4.

Source Data Fig. 5

Raw numerical data for all plots in Fig. 5.

Source Data Fig. 6

Raw numerical data for all plots in Fig. 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delgado-Licona, F., Alsaiari, A., Dickerson, H. et al. Flow-driven data intensification to accelerate autonomous inorganic materials discovery. Nat Chem Eng 2, 436–446 (2025). https://doi.org/10.1038/s44286-025-00249-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44286-025-00249-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing