Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Scalable metal–organic framework-based electrodes for efficient alkaline water electrolysis

Abstract

Renewable electricity-driven water splitting is essential for decarbonizing high-emission industries and transportation. Metal–organic frameworks (MOFs) have shown great promise as catalytic materials for water splitting, but substantial gaps remain between fundamental research and practical application. Here we report the scalable and rapid synthesis of CoCe MOFs for alkaline water-splitting electrolyzers, achieving low energy consumption (4.11 kWh Nm−3 H2) and long-term stability (5,000 h). Experiments indicate that the advantageous physiochemical properties of CoCe MOFs such as lattice distortion and large specific surface area enhance catalytic activity, facilitate water and gas transport and improve electrolyte accessibility to catalytic interfaces in practical devices. Preliminary techno-economic analysis shows that the cost of hydrogen produced from the CoCe MOF-based electrolyzer is US$2.71 kg−1, which is close to the target cost set by the US Department of Energy, and a life cycle assessment indicates that green hydrogen has up to 84.5% lower life cycle carbon emissions than traditional gray hydrogen production pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Process flow comparison between gray hydrogen production and green hydrogen production.
Fig. 2: Crystal structure and characterization of the MOFs.
Fig. 3: Electrocatalytic OER performance.
Fig. 4: Performance assessment of the MOFs in an AEM electrolyzer.
Fig. 5: Performance assessment, LCA and TEA in water electrolysis system.
Fig. 6: Performance enhancement mechanism of MOFs under applied potentials.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or Supplementary Information. Source data are provided with this paper, including the atomic coordinates of the optimized computational models. Additional data related to this paper may be requested from the authors.

References

  1. Liang, Q. et al. Efficient osmosis-powered production of green hydrogen. Nat. Sustain. 7, 628–639 (2024).

    Article  Google Scholar 

  2. Guan, D. et al. Hydrogen society: from present to future. Energy Environ. Sci. 16, 4926–4943 (2023).

    Article  Google Scholar 

  3. Turner, J. A. Sustainable hydrogen production. Science 305, 972–974 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, P. et al. Urine electrooxidation for energy–saving hydrogen generation. Nat. Commun. 16, 2424 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guo, J. et al. Direct seawater electrolysis by adjusting the local reaction environment of a catalyst. Nat. Energy 8, 264–272 (2023).

    CAS  Google Scholar 

  6. Do, T. N. et al. Carbon-neutral hydrogen production from natural gas via electrified steam reforming: techno-economic-environmental perspective. Energy Convers. Manage. 279, 116758 (2023).

    Article  CAS  Google Scholar 

  7. Mahmud, R., Moni, S. M., High, K. & Carbajales-Dale, M. Integration of techno-economic analysis and life cycle assessment for sustainable process design–a review. J. Clean. Prod. 317, 128247 (2021).

    Article  Google Scholar 

  8. Gholkar, P., Shastri, Y. & Tanksale, A. Renewable hydrogen and methane production from microalgae: a techno-economic and life cycle assessment study. J. Clean. Prod. 279, 123726 (2021).

    Article  CAS  Google Scholar 

  9. Fu, R., Kang, L., Zhang, C. & Fei, Q. Application and progress of techno-economic analysis and life cycle assessment in biomanufacturing of fuels and chemicals. Green Chem. Eng. 4, 189–198 (2023).

    Article  Google Scholar 

  10. Megía, P. J., Vizcaíno, A. J., Calles, J. A. & Carrero, A. Hydrogen production technologies: from fossil fuels toward renewable sources. A mini review. Energy Fuels 35, 16403–16415 (2021).

    Article  Google Scholar 

  11. Dufour, J. et al. Life cycle assessment of alternatives for hydrogen production from renewable and fossil sources. Int. J. Hydrogen Energy 37, 1173–1183 (2012).

    Article  CAS  Google Scholar 

  12. Nowotny, J. & Veziroglu, T. N. Impact of hydrogen on the environment. Int. J. Hydrogen Energy 36, 13218–13224 (2011).

    Article  CAS  Google Scholar 

  13. Palmer, G., Roberts, A., Hoadley, A., Dargaville, R. & Honnery, D. Life-cycle greenhouse gas emissions and net energy assessment of large-scale hydrogen production via electrolysis and solar PV. Energy Environ. Sci. 14, 5113–5131 (2021).

    Article  CAS  Google Scholar 

  14. Kwasi-Effah, C. C., Obanor, A. I. & Aisien, F. A. A review on electrolytic method of hydrogen production from water. J. Renewable Sustainable Energy 1, 51–57 (2015).

    Google Scholar 

  15. Brauns, J. & Turek, T. Alkaline water electrolysis powered by renewable energy: a review. Processes 8, 248 (2020).

    Article  CAS  Google Scholar 

  16. Panigrahy, B., Narayan, K. & Rao, B. R. Green hydrogen production by water electrolysis: a renewable energy perspective. Mater. Today Proc. 67, 1310–1314 (2022).

    Article  CAS  Google Scholar 

  17. Zhou, S., Shi, L., Li, Y., Yang, T. & Zhao, S. Metal‐organic framework‐based electrocatalysts for acidic water splitting. Adv. Funct. Mater. 34, 2400767 (2024).

    Article  CAS  Google Scholar 

  18. Yu, F., Bai, X., Liang, M. & Ma, J. Recent progress on metal-organic framework-derived porous carbon and its composite for pollutant adsorption from liquid phase. Chem. Eng. J. 405, 126960 (2021).

    Article  CAS  Google Scholar 

  19. Qian, Y., Zhang, F., Kang, D. J. & Pang, H. A review of metal–organic framework‐based compounds for environmental applications. Energy Environ. Mater. 6, e12414 (2023).

    Article  CAS  Google Scholar 

  20. Zhao, S. et al. Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 1, 16184 (2016).

    Article  CAS  Google Scholar 

  21. Sun, Y. et al. Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat. Commun. 12, 1369 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jiang, Y. et al. Heterostructured bimetallic MOF‐on‐MOF architectures for efficient oxygen evolution reaction. Adv. Mater. 36, 2306910 (2024).

    Article  CAS  Google Scholar 

  23. Zhang, B. et al. Designing MOF nanoarchitectures for electrochemical water splitting. Adv. Mater. 33, 2006042 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guo, Y. et al. Non-derivatized metal-organic framework nanosheets for water electrolysis: fundamentals, regulation strategies and recent advances. Chin. J. Catal. 67, 21–53 (2024).

    Article  Google Scholar 

  25. Chen, C. et al. Local reaction environment in electrocatalysis. Chem. Soc. Rev. 53, 2022–2055 (2024).

    Article  CAS  PubMed  Google Scholar 

  26. Yang, H. et al. Potential-driven structural distortion in cobalt phthalocyanine for electrocatalytic CO2/CO reduction towards methanol. Nat. Commun. 15, 7703 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao, S. et al. Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 5, 881–890 (2020).

    Article  CAS  Google Scholar 

  28. Lyu, S. et al. Exceptional catalytic activity of oxygen evolution reaction via two-dimensional graphene multilayer confined metal-organic frameworks. Nat. Commun. 13, 6171 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cheng, W. et al. Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 4, 115–122 (2019).

    Article  CAS  Google Scholar 

  30. Wu, W. et al. Structural transformation of metal–organic framework with constructed tetravalent nickel sites for efficient water oxidation. J. Energy Chem. 74, 404–411 (2022).

    Article  CAS  Google Scholar 

  31. Hu, Y. et al. Modulating 3d charge state via halogen ions in neighboring molecules of metal–organic frameworks for improving water oxidation. Small 20, 2400042 (2024).

    Article  CAS  Google Scholar 

  32. Wang, X. et al. Embedding oxophilic rare-earth single atom in platinum nanoclusters for efficient hydrogen electro-oxidation. Nat. Commun. 14, 3767 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li, L. et al. Lanthanide-regulating Ru-O covalency optimizes acidic oxygen evolution electrocatalysis. Nat. Commun. 15, 4974 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Feng, J. et al. CO2 electrolysis to multi-carbon products in strong acid at ampere-current levels on La-Cu spheres with channels. Nat. Commun. 15, 4821 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen, L. et al. Energy-efficient CO2 conversion to multicarbon products at high rates on CuGa bimetallic catalyst. Nat. Commun. 15, 7053 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang, J. et al. Formation of hydrided Pt-Ce-H sites in efficient, selective oxidation catalysts. Science 388, 514–519 (2025).

    Article  CAS  PubMed  Google Scholar 

  37. Liu, X., Liu, T., Ouyang, T., Deng, J. & Liu, Z. Ce3+/Ce4+ Ion redox shuttle stabilized Cuδ+ for efficient CO2 electroreduction to C2H4. Angew. Chem. Int. Ed. 64, e202419796 (2025).

    Article  CAS  Google Scholar 

  38. Yin, L. et al. Heteroatom‐driven coordination fields altering single cerium atom sites for efficient oxygen reduction reaction. Adv. Mater. 35, 2302485 (2023).

    Article  CAS  Google Scholar 

  39. Wang, T. et al. Efficient C (sp3)–H bond oxidation on perovskite quantum dots based on Ce‐oxygen affinity. Angew. Chem. Int. Ed. 63, e202409656 (2024).

    Article  CAS  Google Scholar 

  40. Wan, R. et al. Earth-abundant electrocatalysts for acidic oxygen evolution. Nat. Catal. 7, 1288–1304 (2024).

    Article  CAS  Google Scholar 

  41. Roger, I., Shipman, M. & Symes, M. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017).

    Article  CAS  Google Scholar 

  42. Wong-Ng, W., Kaduk, J. A., Wu, H. & Suchomel, M. Synchrotron X-ray studies of metal-organic framework M2 (2, 5-dihydroxyterephthalate), M=(Mn, Co, Ni, Zn)(MOF-74). Powder Diffr. 27, 256–262 (2012).

    Article  CAS  Google Scholar 

  43. Jun, H., Oh, S., Lee, G. & Oh, M. Enhanced catalytic activity of MOF-74 via providing additional open metal sites for cyanosilylation of aldehydes. Sci. Rep. 12, 14735 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, C. et al. Microwave-assisted rapid synthesis of well-shaped MOF-74 (Ni) for CO2 efficient capture. Inorg. Chem. 58, 2717–2728 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, X. et al. Engineering 3d–2p–4f gradient orbital coupling to enhance electrocatalytic oxygen reduction. Adv. Mater. 34, 2206540 (2022).

    Article  CAS  Google Scholar 

  46. Li, M. et al. Reinforcing Co–O covalency via Ce(4f)–O(2p)–Co(3d) gradient orbital coupling for high‐efficiency oxygen evolution. Adv. Mater. 35, 2302462 (2023).

    Article  CAS  Google Scholar 

  47. Guo, Z. et al. Manipulating the spin state of spinel octahedral sites via a π–π type orbital coupling to boost water oxidation. Angew. Chem. Int. Ed. 63, e202406711 (2024).

    Article  CAS  Google Scholar 

  48. Hu, J. et al. Charge‐transfer‐regulated bimetal ferrocene‐based organic frameworks for promoting electrocatalytic oxygen evolution. Carbon Energy 5, e315 (2023).

    Article  CAS  Google Scholar 

  49. Luo, S. et al. Optimizing alkaline water electrolysis: a dual-model approach for enhanced hydrogen production efficiency. Energies 17, 5512 (2024).

    Article  CAS  Google Scholar 

  50. Montoya, J. H. et al. Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2017).

    Article  Google Scholar 

  51. Luo, X. et al. Fe-S dually modulated adsorbate evolution and lattice oxygen compatible mechanism for water oxidation. Nat. Commun. 15, 8293 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, T. et al. Atomically thin high-entropy oxides via naked metal ion self-assembly for proton exchange membrane electrolysis. Nat. Commun. 16, 1037 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hu, Y. et al. Understanding the sulphur-oxygen exchange process of metal sulphides prior to oxygen evolution reaction. Nat. Commun. 14, 1949 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S. Zhao is grateful for the support from the National Natural Science Foundation of China (grant no. 22373027). L.S. is grateful for the support from the National Natural Science Foundation of China (grant no. 22409199). We thank the 1W1B-XAFS and 1W2B-WAXS Beamline of Beijing Synchrotron Radiation Facility for providing technical support and assistance in data collection. We also thank J. Dong and P. An from Beijing Synchrotron Radiation Facility for XAFS data analysis. We are grateful for the support from Intelligent Environment Research Center in the LCA evaluation using SimaPro.

Author information

Authors and Affiliations

Authors

Contributions

S. Zhao proposed the research direction and supervised the project. Y.G. designed and performed the experiments. L.S. contributed to the theoretical calculation and experimental analysis. X.S. and S. Zhang supported the LCA and TEA. T.Z., W.T. and Y.L. assisted with parts of the experiments and data analysis. S. Zhao, F.Z. and D.L. contributed to theoretical and model development and supported data analysis. Y.G., L.S. and S. Zhao discussed the results and cowrote the manuscript. All authors participated in the discussion and the preparation of the manuscript.

Corresponding author

Correspondence to Shenlong Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Shaojun Guo, Lei Wang, Yao Zheng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussions, Figs. 1–53 and Tables 1–14.

Supplementary Video 1

Supplementary Video 1

Supplementary Video 2

Supplementary Video 2

Supplementary Data 1

Atomic coordinates of the optimized computational models.

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Source Data Fig. 5

Source data for Fig. 5.

Source Data Fig. 6

Source data for Fig. 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Shi, L., Shi, X. et al. Scalable metal–organic framework-based electrodes for efficient alkaline water electrolysis. Nat Chem Eng 2, 474–483 (2025). https://doi.org/10.1038/s44286-025-00262-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44286-025-00262-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing