Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Boundary-sensing mechanism in branched microtubule networks

Abstract

The self-organization of cytoskeletal biopolymers, such as microtubules (MTs), depends on mechanosensing and adaptation to confined spaces such as cellular protrusions. Understanding how these active biopolymers coordinate their formation under confinement leads to advances in bioengineering. Here we report the self-organization of branched MT networks in channels with narrow junctions and closed ends, mimicking cellular protrusions. We find that branching MT nucleation occurs in the post-narrowing region only if this region exceeds a minimum length, determined by MT dynamic instability at the closed end and the timescale for nucleation at a distant point. We term this feedback ‘boundary sensing’. Increasing the amount of branching factor TPX2 in the system accelerates MT nucleation and adjusts this minimum length, but excess TPX2 stabilizes MTs at the closed end, disrupting network formation. We performed experiments and simulations to study how this tunable feedback, wherein growing MTs navigate confinement and create nucleation sites, shapes MT architecture. Our findings impact the understanding of MT self-organization during axonal growth, dendrite formation, plant development, fungal guidance and the engineering of biomaterials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Branched MT network formation near a rigid planar boundary.
Fig. 2: MT network formation in a channel of varying width.
Fig. 3: Channel-length-dependent onset of branching MT nucleation in the post-narrowing region.
Fig. 4: Tuning the adaptive response.
Fig. 5: Computational model of MT boundary sensing with experimental comparisons.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this Article and its Supplementary Information files.

Code availability

The MATLAB codes used for simulations performed in this study are included in the Supplementary Information files.

References

  1. Miyazaki, M., Chiba, M., Eguchi, H., Ohki, T. & Ishiwata, S. Cell-sized spherical confinement induces the spontaneous formation of contractile actomyosin rings in vitro. Nat. Cell Biol. 17, 480–489 (2015).

    Article  PubMed  CAS  Google Scholar 

  2. Bashirzadeh, Y., Wubshet, N. H. & Liu, A. P. Confinement geometry tunes fascin-actin bundle structures and consequently the shape of a lipid bilayer vesicle. Front. Mol. Biosci. 7, 610277 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Gai, Y., Cook, B., Setru, S., Stone, H. A. & Petry, S. Confinement size determines the architecture of Ran-induced microtubule networks. Soft Matter 17, 5921–5931 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Pinot, M. et al. Effects of confinement on the self-organization of microtubules and motors. Curr. Biol. 19, 954–960 (2009).

    Article  PubMed  CAS  Google Scholar 

  5. Oakes, P. W., Banerjee, S., Marchetti, M. C. & Gardel, M. L. Geometry regulates traction stresses in adherent cells. Biophys. J. 107, 825–833 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Araújo, N. A. et al. Steering self-organisation through confinement. Soft Matter 19, 1695–1704 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Swanson, D. & Wingreen, N. S. Active biopolymers confer fast reorganization kinetics. Phys. Rev. Lett. 107, 218103 (2011).

    Article  PubMed  Google Scholar 

  8. Andreu, I. et al. The force loading rate drives cell mechanosensing through both reinforcement and cytoskeletal softening. Nat. Commun. 12, 4229 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Seetharaman, S. et al. Microtubules tune mechanosensitive cell responses. Nat. Mater. 21, 366–377 (2022).

    Article  PubMed  CAS  Google Scholar 

  10. Clarke, D. N. & Martin, A. C. Actin-based force generation and cell adhesion in tissue morphogenesis. Curr. Biol. 31, R667–R680 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Jiang, X., Bruzewicz, D. A., Wong, A. P., Piel, M. & Whitesides, G. M. Directing cell migration with asymmetric micropatterns. Proc. Natl Acad. Sci. USA 102, 975–978 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Mahmud, G. et al. Directing cell motions on micropatterned ratchets. Nat. Phys. 5, 606–612 (2009).

    Article  CAS  Google Scholar 

  13. Vignaud, T., Blanchoin, L. & Théry, M. Directed cytoskeleton self-organization. Trends Cell Biol. 22, 671–682 (2012).

    Article  PubMed  CAS  Google Scholar 

  14. Théry, M. Micropatterning as a tool to decipher cell morphogenesis and functions. J. Cell Sci. 123, 4201–4213 (2010).

    Article  PubMed  Google Scholar 

  15. Han, B. et al. Conversion of mechanical force into biochemical signaling. J. Biol. Chem. 279, 54793–54801 (2004).

    Article  PubMed  CAS  Google Scholar 

  16. Gardel, M. L., Kasza, K. E., Brangwynne, C. P., Liu, J. & Weitz, D. A. Mechanical response of cytoskeletal networks. Methods Cell Biol. 89, 487–519 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Sakamoto, R. et al. Tug-of-war between actomyosin-driven antagonistic forces determines the positioning symmetry in cell-sized confinement. Nat. Commun. 11, 3063 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Banerjee, S., Gardel, M. L. & Schwarz, U. S. The actin cytoskeleton as an active adaptive material. Annu. Rev. Condens. Matter Phys. 11, 421–439 (2020).

    Article  PubMed  Google Scholar 

  19. Amiri, S. et al. Intracellular tension sensor reveals mechanical anisotropy of the actin cytoskeleton. Nat. Commun. 14, 8011 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Sakamoto, R., Izri, Z., Shimamoto, Y., Miyazaki, M. & Maeda, Y. T. Geometric trade-off between contractile force and viscous drag determines the actomyosin-based motility of a cell-sized droplet. Proc. Natl Acad. Sci. USA 119, e2121147119 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Stachowiak, M. R. et al. A mechanical-biochemical feedback loop regulates remodeling in the actin cytoskeleton. Proc. Natl Acad. Sci. USA 111, 17528–17533 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Risca, V. I. et al. Actin filament curvature biases branching direction. Proc. Natl Acad. Sci. USA 109, 2913–2918 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Dogterom, M. & Koenderink, G. H. Actin–microtubule crosstalk in cell biology. Nat. Rev. Mol. Cell Biol. 20, 38–54 (2019).

    Article  PubMed  CAS  Google Scholar 

  24. Stehbens, S. J. et al. CLASPs link focal-adhesion-associated microtubule capture to localized exocytosis and adhesion site turnover. Nat. Cell Biol. 16, 558–570 (2014).

    Article  Google Scholar 

  25. Gierke, S. & Wittmann, T. EB1-recruited microtubule +TIP complexes coordinate protrusion dynamics during 3D epithelial remodeling. Curr. Biol. 22, 753–762 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Schmidt, C. J. & Stehbens, S. J. Microtubule control of migration: coordination in confinement. Curr. Opin. Cell Biol. 86, 102289 (2024).

    Article  PubMed  CAS  Google Scholar 

  27. Lavrsen, K. et al. Microtubule detyrosination drives symmetry breaking to polarize cells for directed cell migration. Proc. Natl Acad. Sci. USA 120, e2300322120 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Brangwynne, C. P. et al. Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J. Cell Biol. 173, 733–741 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Li, Y. et al. Compressive forces stabilize microtubules in living cells. Nat. Mater. 22, 913–924 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Brouhard, G. J. & Rice, L. M. Microtubule dynamics: an interplay of biochemistry and mechanics. Nat. Rev. Mol. Cell Biol. 19, 451–463 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Schaedel, L. et al. Microtubules self-repair in response to mechanical stress. Nat. Mater. 14, 1156–1163 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Ju, R. J. et al. Compression-dependent microtubule reinforcement enables cells to navigate confined environments. Nat. Cell Biol. 26, 1520–1534 (2024).

    Article  PubMed  CAS  Google Scholar 

  33. Ndlec, F., Surrey, T., Maggs, A. C. & Leibler, S. Self-organization of microtubules and motors. Nature 389, 305–308 (1997).

    Article  Google Scholar 

  34. Sulerud, T. et al. Microtubule-dependent pushing forces contribute to long-distance aster movement and centration in Xenopus laevis egg extracts. Mol. Biol. Cell 31, 2791–2802 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Holy, T. E., Dogterom, M., Yurke, B. & Leibler, S. Assembly and positioning of microtubule asters in microfabricated chambers. Proc. Natl Acad. Sci. USA 94, 6228–6231 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Suzuki, K., Miyazaki, M., Takagi, J., Itabashi, T. & Ishiwata, S. Spatial confinement of active microtubule networks induces large-scale rotational cytoplasmic flow. Proc. Natl Acad. Sci. USA 114, 2922–2927 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Inoue, D. et al. Adaptation of patterns of motile filaments under dynamic boundary conditions. ACS Nano 13, 12452–12460 (2019).

    Article  PubMed  CAS  Google Scholar 

  38. López, M. P. et al. Actin–microtubule coordination at growing microtubule ends. Nat. Commun. 5, 4778 (2014).

    Article  Google Scholar 

  39. Théry, M. et al. Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc. Natl Acad. Sci. USA 103, 19771–19776 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gélin, M. et al. Microtubules under mechanical pressure can breach dense actin networks. J. Cell Sci. 136, jcs261667 (2023).

    Article  PubMed  Google Scholar 

  41. Yamamoto, S. et al. Actin network architecture can ensure robust centering or sensitive decentering of the centrosome. EMBO J. 41, e111631 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Murata, T. et al. Microtubule-dependent microtubule nucleation based on recruitment of γ-tubulin in higher plants. Nat. Cell Biol. 7, 961–968 (2005).

    Article  PubMed  CAS  Google Scholar 

  43. Nakamura, M., Ehrhardt, D. W. & Hashimoto, T. Microtubule and katanin-dependent dynamics of microtubule nucleation complexes in the acentrosomal Arabidopsis cortical array. Nat. Cell Biol. 12, 1064–1070 (2010).

    Article  PubMed  CAS  Google Scholar 

  44. Jacobs, B., Schneider, R., Molenaar, J., Filion, L. & Deinum, E. E. Microtubule nucleation complex behavior is critical for cortical array homogeneity and xylem wall patterning. Proc. Natl Acad. Sci. USA 119, e2203900119 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Mirabet, V. et al. The self-organization of plant microtubules inside the cell volume yields their cortical localization, stable alignment, and sensitivity to external cues. PLoS Comput. Biol. 14, e1006011 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Shi, X. & Ma, Y. Understanding phase behavior of plant cell cortex microtubule organization. Proc. Natl Acad. Sci. USA 107, 11709–11714 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Yan, Y., Sun, Z., Yan, P., Wang, T. & Zhang, Y. Mechanical regulation of cortical microtubules in plant cells. New Phytol. 239, 1609–1621 (2023).

    Article  PubMed  CAS  Google Scholar 

  48. Hejnowicz, Z., Rusin, A. & Rusin, T. Tensile tissue stress affects the orientation of cortical microtubules in the epidermis of sunflower hypocotyl. J. Plant Growth Regul. 19, 31–44 (2000).

    Article  PubMed  CAS  Google Scholar 

  49. Hamant, O., Inoue, D., Bouchez, D., Dumais, J. & Mjolsness, E. Are microtubules tension sensors? Nat. Commun. 10, 2360 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Petry, S., Groen, A. C., Ishihara, K., Mitchison, T. J. & Vale, R. D. Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2. Cell 152, 768–777 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Petry, S. Mechanisms of mitotic spindle assembly. Annu. Rev. Biochem. 85, 659–683 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Decker, F., Oriola, D., Dalton, B. & Brugues, J. Autocatalytic microtubule nucleation determines the size and mass of Xenopus laevis egg extract spindles. Elife 7, e31149 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kraus, J., Travis, S. M., King, M. R. & Petry, S. Augmin is a Ran-regulated spindle assembly factor. J. Biol. Chem. 299, 104736 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Travis, S. M. et al. Integrated model of the vertebrate augmin complex. Nat. Commun. 14, 2072 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Guo, C. et al. Structural basis of protein condensation on microtubules underlying branching microtubule nucleation. Nat. Commun. 14, 3682 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Gouveia, B. et al. Acentrosomal spindles assemble from branching microtubule nucleation near chromosomes in Xenopus laevis egg extract. Nat. Commun. 14, 3696 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Paredez, A. R., Somerville, C. R. & Ehrhardt, D. W. Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312, 1491–1495 (2006).

    Article  PubMed  CAS  Google Scholar 

  58. Sasaki, T. et al. Confined-microtubule assembly shapes three-dimensional cell wall structures in xylem vessels. Nat. Commun. 14, 6987 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Higa, T. et al. Microtubule-associated phase separation of MIDD1 tunes cell wall spacing in xylem vessels in Arabidopsis thaliana. Nat. Plants 10, 100–117 (2024).

    Article  PubMed  CAS  Google Scholar 

  60. Stiess, M. et al. Axon extension occurs independently of centrosomal microtubule nucleation. Science 327, 704–707 (2010).

    Article  PubMed  CAS  Google Scholar 

  61. Sánchez-Huertas, C. et al. Non-centrosomal nucleation mediated by augmin organizes microtubules in post-mitotic neurons and controls axonal microtubule polarity. Nat. Commun. 7, 12187 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zhang, Y. et al. Augmin complex activity finetunes dendrite morphology through non-centrosomal microtubule nucleation in vivo. J. Cell Sci. 137, jcs261512 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Mukherjee, A. et al. γ-TuRCs and the augmin complex are required for the development of highly branched dendritic arbors in Drosophila. J. Cell Sci. 137, jcs261534 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Zaferani, M., Song, R., Petry, S. & Stone, H. A. Building on-chip cytoskeletal circuits via branched microtubule networks. Proc. Natl Acad. Sci. USA 121, e2315992121 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Thawani, A., Stone, H. A., Shaevitz, J. W. & Petry, S. Spatiotemporal organization of branched microtubule networks. Elife 8, e43890 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Pullarkat, P. A., Dommersnes, P., Fernández, P., Joanny, J.-F. & Ott, A. Osmotically driven shape transformations in axons. Phys. Rev. Lett. 96, 048104 (2006).

    Article  PubMed  Google Scholar 

  67. Andersson, M. et al. Axon morphology is modulated by the local environment and impacts the noninvasive investigation of its structure–function relationship. Proc. Natl Acad. Sci. USA 117, 33649–33659 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. King, M. R. & Petry, S. Phase separation of TPX2 enhances and spatially coordinates microtubule nucleation. Nat. Commun. 11, 270 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Setru, S. U. et al. A hydrodynamic instability drives protein droplet formation on microtubules to nucleate branches. Nat. Phys. 17, 493–498 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Roostalu, J., Cade, N. I. & Surrey, T. Complementary activities of TPX2 and chTOG constitute an efficient importin-regulated microtubule nucleation module. Nat. Cell Biol. 17, 1422–1434 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Mimori-Kiyosue, Y. & Tsukita, S. “Search-and-capture” of microtubules through plus-end-binding proteins (+TIPs). J. Biochem. 134, 321–326 (2003).

    Article  PubMed  CAS  Google Scholar 

  72. Heald, R. & Khodjakov, A. Thirty years of search and capture: the complex simplicity of mitotic spindle assembly. J. Cell Biol. 211, 1103–1111 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Dema, A., Charafeddine, R., Rahgozar, S., van Haren, J. & Wittmann, T. Growth cone advance requires EB1 as revealed by genomic replacement with a light-sensitive variant. Elife 12, e84143 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Dema, A. et al. Doublecortin reinforces microtubules to promote growth cone advance in soft environments. Curr. Biol. 34, 5822–5832 (2024).

    Article  PubMed  CAS  Google Scholar 

  75. Held, M., Kašpar, O., Edwards, C. & Nicolau, D. V. Intracellular mechanisms of fungal space searching in microenvironments. Proc. Natl Acad. Sci. USA 116, 13543–13552 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Kwan, A. C., Dombeck, D. A. & Webb, W. W. Polarized microtubule arrays in apical dendrites and axons. Proc. Natl Acad. Sci. USA 105, 11370–11375 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Baas, P. W., Deitch, J. S., Black, M. M. & Banker, G. A. Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc. Natl Acad. Sci. USA 85, 8335–8339 (1988).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Gavriljuk, K. et al. A self-organized synthetic morphogenic liposome responds with shape changes to local light cues. Nat. Commun. 12, 1548 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Sato, Y., Hiratsuka, Y., Kawamata, I., Murata, S. & Nomura, S. M. Micrometer-sized molecular robot changes its shape in response to signal molecules. Sci. Robot. 2, eaal3735 (2017).

    Article  PubMed  Google Scholar 

  80. Kattan, J., Doerr, A., Dogterom, M. & Danelon, C. Shaping liposomes by cell-free expressed bacterial microtubules. ACS Synth. Biol. 10, 2447–2455 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Wang, S. & Urban, M. W. Self-healing polymers. Nat. Rev. Mater. 5, 562–583 (2020).

    Article  CAS  Google Scholar 

  82. Petry, S., Pugieux, C., Nédélec, F. J. & Vale, R. D. Augmin promotes meiotic spindle formation and bipolarity in Xenopus egg extracts. Proc. Natl Acad. Sci. USA 108, 14473–14478 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

M.Z. acknowledges an Omenn-Darling Postdoctoral Fellowship from the Princeton Bioengineering Institute. This work was supported by the Princeton University Eric and Wendy Schmidt Transformative Technology Fund.

Author information

Authors and Affiliations

Authors

Contributions

M.Z., N.S.W., H.A.S. and S.P. conceived the project. M.Z. and R.S. conducted the experiments, data analysis and simulations. M.Z., N.S.W. and H.A.S. developed the model. H.A.S. and S.P. supervised the project. All authors contributed to the writing of the paper.

Corresponding authors

Correspondence to Howard A. Stone or Sabine Petry.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Yusuke T. Maeda and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion and Figs. 1–4.

Reporting Summary

Supplementary Video 1

Self-organization of a branched microtubule (MT) network in front of a flat, rigid physical boundary. The average angle between the MT network and the wall is 85 ± 10°. MTs are visualized in magenta, and EB1 comets appear in green. Branching MT nucleation was induced by the addition of 10 µM RanQ69L.

Supplementary Video 2

Self-organization of a branched MT network within a microchannel containing a narrowing region and a closed end. Branching MT nucleation was induced by the addition of 10 µM RanQ69L.

Supplementary Video 3

Self-organization of a branched MT network within microchannels containing narrowing regions and post-narrowing regions of varying lengths. Branching MT nucleation was induced by the addition of 10 µM RanQ69L.

Supplementary Video 4

Growth of individual MTs within the narrowing region when it was empty (top) compared with growth when the narrowing region was pre-filled with 5–7 MTs (bottom). Branching MT nucleation was induced by the addition of 10 µM RanQ69L.

Supplementary Video 5

Self-organization of a branched MT network through a narrowing region approximately 400 nm in width. Branching MT nucleation was induced by the addition of 10 µM RanQ69L.

Supplementary Video 6

Self-organization of branched MT networks within a microchannel containing two narrowing and two post-narrowing regions. Branching MT nucleation was induced by the addition of 10 µM RanQ69L.

Supplementary Video 7

Self-organization of a branched MT network within microchannels containing narrowing regions and post-narrowing regions of length L = 9 µm in the presence of 10 µM RanQ69L and 350 nM TPX2. Branching MT nucleation was induced by the combined addition of RanQ69L and TPX2.

Supplementary Video 8

Self-organization of a branched MT network within microchannels containing narrowing regions and post-narrowing regions of lengths L = 5 µm and L = 15 µm in the presence of 10 µM RanQ69L and 1 µM TPX2. Branching MT nucleation was induced by the combined addition of RanQ69L and TPX2.

Supplementary Video 9

Computational simulations of branched MT network self-organization in a symmetric bifurcation with side channels of lengths L = 5 µm and L = 15 µm (top). Simulations of branched MT network self-organization in a symmetric bifurcation with higher TPX2 concentration in one side channel (bottom).

Supplementary Video 10

Self-organization of a branched MT network in a symmetric bifurcation with side channels of lengths L = 5 µm and L = 15 µm. Branching MT nucleation was induced by the addition of 10 µM RanQ69L.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaferani, M., Song, R., Wingreen, N.S. et al. Boundary-sensing mechanism in branched microtubule networks. Nat Chem Eng 2, 498–510 (2025). https://doi.org/10.1038/s44286-025-00264-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44286-025-00264-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing