Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Wide-bandgap semiconductors and power electronics as pathways to carbon neutrality

Abstract

Energy supply and consumption account for approximately 75% of global greenhouse gas emissions. Advances in semiconductor and power electronics technologies are required to integrate renewable energy into grids, electrify transport and the heating and cooling of buildings, and increase the efficiency of electricity conversion. This Review outlines the opportunities for carbon neutrality in the energy sector enabled by synergistic advances in wide-bandgap (WBG) semiconductors and power electronics. First, we present advances in WBG power devices, converter circuits and power electronics applications and their implications. For example, WBG materials have a high critical electric field and thermal stability; therefore, WBG devices can operate at higher temperatures and frequencies than silicon devices, enabling higher efficiency and reducing the number of passive components and cooling systems required in converter circuits. We then discuss advances in renewable energy systems, electric vehicles, data centres and heat pumps enabled by WBG devices, and their potential to reduce carbon emissions through electrification and increased energy conversion efficiency. We also consider the implications of the carbon footprint of WBG device manufacturing being larger than that of silicon manufacturing. Finally, we discuss research gaps that must be addressed to realize the potential of WBG semiconductors and power electronics for carbon neutrality.

Key points

  • Advances in semiconductor and power electronics technologies are essential for reducing greenhouse gas emissions to develop a carbon-neutral energy system by 2050.

  • Wide-bandgap (WBG) semiconductors can increase the efficiency, functionality, dynamic response and form factor of power electronics systems through a holistic improvement in performance across the material, device and circuit levels.

  • Using WBG semiconductors instead of silicon in power electronics can reduce the carbon footprint per chip, reduce the number of passive components and volume of cooling systems required, increase the energy conversion efficiency and aid the deployment of renewable energy and electrification of transport and heating and/or cooling of buildings.

  • The adoption of WBG power electronics in photovoltaics, electric vehicles, data centres, and heat pumps could reduce annual carbon emissions in the USA by tens of millions of tonnes.

  • Although manufacturing WBG semiconductors might have a higher carbon footprint than silicon manufacturing, this extra carbon footprint is small compared to the system-level carbon savings enabled by WBG devices.

  • Further innovations across materials, devices, circuits and systems, as well as a shift to design power electronics based on the principles of reuse, remanufacturing and recycling, are essential to fulfil the potential of WBG power electronics for carbon neutrality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The role of wide-bandgap power electronics in achieving carbon neutrality.
Fig. 2: Power semiconductor devices.
Fig. 3: Power electronics circuits.
Fig. 4: Power electronics applications in photovoltaics, electric vehicles and data centres.
Fig. 5: Opportunities for carbon neutrality enabled by power electronics and wide-bandgap semiconductors.

Similar content being viewed by others

References

  1. Net Zero by 2050 — Analysis (IEA, 2021); https://www.iea.org/reports/net-zero-by-2050.

  2. Power Electronics Market Size, Share & Industry Analysis, by Device Type (Power Discrete, Power Module, and Power IC), by Material (Silicon, GaN, SiC, and Others), by End-User (Consumer Electronics, Automotive, Industrial, Biomedical and Healthcare, Aerospace and Defense, and Others), and Regional Forecast, 2024–2032 (Fortune Business Insights, 2024); https://www.fortunebusinessinsights.com/power-electronics-market-102595.

  3. Power Semiconductor Market Size, Share, Competitive Landscape and Trend Analysis Report, by Product, by Component, by Application: Global Opportunity Analysis and Industry Forecast, 2023–2032 (Allied Market Research, 2023); https://www.alliedmarketresearch.com/power-semiconductor-market.

  4. van Wyk, J. D. & Lee, F. C. On a future for power electronics. IEEE J. Emerg. Sel. Top. Power Electron. 1, 59–72 (2013). This paper presents an overview of the switch-mode power supply technologies used in telecommunications and data centres.

    Article  MATH  Google Scholar 

  5. Shenai, K., Scott, R. S. & Baliga, B. J. Optimum semiconductors for high-power electronics. IEEE Trans. Electron. Dev. 36, 1811–1823 (1989). This paper explores the optimum semiconductor materials for power electronics applications and defines the relevant material limits and figures of merit for assessing the performance of power devices.

    Article  MATH  Google Scholar 

  6. Zhang, Y., Udrea, F. & Wang, H. Multidimensional device architectures for efficient power electronics. Nat. Electron. 5, 723–734 (2022). This paper presents innovative device architectures for improving power device performance along with the relevant performance limits, figures of merit and geometric scaling laws.

    Article  MATH  Google Scholar 

  7. Schiro, A. & Oliver, S. Wide bandgap power to electrify our world for a sustainable future. IEEE Power Electron. Mag. 11, 32–38 (2024).

    Article  MATH  Google Scholar 

  8. Chen, Y., Shi, K., Chen, M. & Xu, D. Data center power supply systems: from grid edge to point-of-load. IEEE J. Emerg. Sel. Top. Power Electron. 11, 2441–2456 (2022).

    Article  MATH  Google Scholar 

  9. Boroyevich, D., Cvetkovic, I., Burgos, R. & Dong, D. Intergrid: a future electronic energy network? IEEE J. Emerg. Sel. Top. Power Electron. 1, 127–138 (2013). This paper presents a vision for a future grid network, which uses power converters as energy routers to achieve a high penetration of renewable energy sources.

    Article  Google Scholar 

  10. Popović-Gerber, J., Ferreira, J. A. & Wyk, J. Dvan Quantifying the value of power electronics in sustainable electrical energy systems. IEEE Trans. Power Electron. 26, 3534–3544 (2011).

    Article  MATH  Google Scholar 

  11. Hannan, M. A. et al. Power electronics contribution to renewable energy conversion addressing emission reduction: applications, issues, and recommendations. Appl. Energy 251, 113404 (2019).

    Article  MATH  Google Scholar 

  12. Chakraborty, A. Advancements in power electronics and drives in interface with growing renewable energy resources. Renew. Sustain. Energy Rev. 15, 1816–1827 (2011).

    Article  MATH  Google Scholar 

  13. Qin, Y. et al. Thermal management and packaging of wide and ultra-wide bandgap power devices: a review and perspective. J. Phys. D 56, 093001 (2023).

    Article  MATH  Google Scholar 

  14. Huang, A. Q. Power semiconductor devices for smart grid and renewable energy systems. Proc. IEEE 105, 2019–2047 (2017). This paper reviews power semiconductor devices for electrical energy generation and delivery applications.

    Article  MATH  Google Scholar 

  15. Williams, R. K. et al. The trench power MOSFET: part I — history, technology, and prospects. IEEE Trans. Electron. Dev. 64, 674–691 (2017).

    Article  MATH  Google Scholar 

  16. Iwamuro, N. & Laska, T. IGBT history, state-of-the-art, and future prospects. IEEE Trans. Electron. Dev. 64, 741–752 (2017).

    Article  MATH  Google Scholar 

  17. Udrea, F., Deboy, G. & Fujihira, T. Superjunction power devices, history, development, and future prospects. IEEE Trans. Electron. Dev. 64, 720–734 (2017).

    Article  MATH  Google Scholar 

  18. She, X., Huang, A. Q., Lucía, Ó. & Ozpineci, B. Review of silicon carbide power devices and their applications. IEEE Trans. Ind. Electron. 64, 8193–8205 (2017). This paper reviews the state of the art of silicon carbide power devices and applications.

    Article  MATH  Google Scholar 

  19. Jones, E. A., Wang, F. F. & Costinett, D. Review of commercial GaN power devices and GaN-based converter design challenges. IEEE J. Emerg. Sel. Top. Power Electron. 4, 707–719 (2016).

    Article  MATH  Google Scholar 

  20. Kozak, J. P. et al. Stability, reliability, and robustness of GaN power devices: a review. IEEE Trans. Power Electron. 38, 8442–8471 (2023).

    Article  MATH  Google Scholar 

  21. Baliga, B. J. Semiconductors for high‐voltage, vertical channel field‐effect transistors. J. Appl. Phys. 53, 1759–1764 (1982).

    Article  MATH  Google Scholar 

  22. Hudgins, J. L., Simin, G. S., Santi, E. & Khan, M. A. An assessment of wide bandgap semiconductors for power devices. IEEE Trans. Power Electron. 18, 907–914 (2003).

    Article  MATH  Google Scholar 

  23. Tsao, J. Y. et al. Ultrawide-bandgap semiconductors: research opportunities and challenges. Adv. Electron. Mater. 4, 1600501 (2018). This paper surveys the properties, synthesis and device applications of ultrawide-bandgap semiconductors.

    Article  MATH  Google Scholar 

  24. Zhang, Y., Dadgar, A. & Palacios, T. Gallium nitride vertical power devices on foreign substrates: a review and outlook. J. Phys. D: Appl. Phys. 51, 273001 (2018).

    Article  Google Scholar 

  25. Palmour, J. W. et al. Silicon carbide power MOSFETs: breakthrough performance from 900 V up to 15 kV. In 2014 IEEE 26th International Symposium on Power Semiconductor Devices and ICs (ISPSD) 79–82 (IEEE, 2014).

  26. Amano, H. et al. The 2018 GaN power electronics roadmap. J. Phys. D 51, 163001 (2018). This paper reviews gallium nitride power semiconductor technologies, including materials, devices, integration and applications.

    Article  MATH  Google Scholar 

  27. Oka, T. Recent development of vertical GaN power devices. Jpn. J. Appl. Phys. 58, SB0805 (2019).

    Article  MATH  Google Scholar 

  28. Liu, J. et al. 1.2-kV vertical GaN Fin-JFETs: high-temperature characteristics and avalanche capability. IEEE Trans. Electron. Dev. 68, 2025–2032 (2021).

    Article  MATH  Google Scholar 

  29. Li, W. et al. Single and multi-fin normally-off Ga2O3 vertical transistors with a breakdown voltage over 2.6 kV. In 2019 IEEE International Electron Devices Meeting (IEDM) 12.4.1–12.4.4 (IEEE, 2019).

  30. Bhattacharyya, A. et al. 4.4 kV β-Ga2O3 MESFETs with power figure of merit exceeding 100 MW cm−2. Appl. Phys. Express 15, 061001 (2022).

    Article  MATH  Google Scholar 

  31. Wu, Y. et al. More than 3000 V reverse blocking Schottky-drain AlGaN-channel HEMTs with >230 MW/cm2 power figure-of-merit. IEEE Electron. Device Lett. 40, 1724–1727 (2019).

    Article  MATH  Google Scholar 

  32. Abid, I. et al. Remarkable breakdown voltage on AlN/AlGaN/AlN double heterostructure. In 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD) 310–312 (IEEE, 2020).

  33. Donato, N., Rouger, N., Pernot, J., Longobardi, G. & Udrea, F. Diamond power devices: state of the art, modelling, figures of merit and future perspective. J. Phys. D 53, 093001 (2020).

    Article  Google Scholar 

  34. Xiao, M. et al. Multi-channel monolithic-cascode HEMT (MC2-HEMT): a new GaN power switch up to 10 kV. In 2021 IEEE International Electron Devices Meeting (IEDM) 5.5.1–5.5.4 (IEEE, 2021).

  35. Han, L., Liang, L., Kang, Y. & Qiu, Y. A review of SiC IGBT: models, fabrications, characteristics, and applications. IEEE Trans. Power Electron. 36, 2080–2093 (2021).

    Article  MATH  Google Scholar 

  36. Xiong, Y., Sun, S., Jia, H., Shea, P. & John Shen, Z. New physical insights on power MOSFET switching losses. IEEE Trans. Power Electron. 24, 525–531 (2009).

    Article  MATH  Google Scholar 

  37. Buffolo, M. et al. Review and outlook on GaN and SiC power devices: industrial state-of-the-art, applications, and perspectives. IEEE Trans. Electron. Dev. 71, 1344–1355 (2024).

    Article  MATH  Google Scholar 

  38. Qin, Y. et al. 10-kV Ga2O3 charge-balance Schottky rectifier operational at 200 °C. IEEE Electron. Device Lett. 44, 1268–1271 (2023).

    Article  MATH  Google Scholar 

  39. Reese, S. B., Remo, T., Green, J. & Zakutayev, A. How much will gallium oxide power electronics cost? Joule 3, 903–907 (2019).

    Article  Google Scholar 

  40. Porter, M. et al. Switching figure-of-merit, optimal design, and power loss limit of (ultra-) wide bandgap power devices: a perspective. Appl. Phys. Lett. 125, 110501 (2024).

    Article  MATH  Google Scholar 

  41. Qin, Y., Wang, Z., Sasaki, K., Ye, J. & Zhang, Y. Recent progress of Ga2O3 power technology: large-area devices, packaging and applications. Jpn. J. Appl. Phys. 62, SF0801 (2023).

    Article  MATH  Google Scholar 

  42. Zhou, F. et al. An avalanche-and-surge robust ultrawide-bandgap heterojunction for power electronics. Nat. Commun. 14, 4459 (2023).

    Article  MATH  Google Scholar 

  43. Xiao, M., Ma, Y., Liu, K., Cheng, K. & Zhang, Y. 10 kV, 39 mΩ·cm2 multi-channel AlGaN/GaN schottky barrier diodes. IEEE Electron. Device Lett. 42, 808–811 (2021).

    Article  Google Scholar 

  44. Zhang, Y. et al. GaN FinFETs and trigate devices for power and RF applications: review and perspective. Semicond. Sci. Technol. 36, 054001 (2021).

    Article  MATH  Google Scholar 

  45. Then, H. W. et al. Advanced scaling of enhancement mode high-K gallium nitride-on-300mm-Si(111) transistor and 3D layer transfer GaN-silicon FinFET CMOS integration. In 2021 IEEE International Electron Devices Meeting (IEDM) 11.1.1–11.1.4 (IEEE, 2021).

  46. Masuda, T., Saito, Y., Kumazawa, T., Hatayama, T. & Harada, S. 0.63mΩ∙cm2/1170 V 4H-SiC super junction V-groove trench MOSFET. In 2018 IEEE International Electron Devices Meeting (IEDM) 8.1.1–8.1.4 (IEEE, 2018).

  47. Baba, M. et al. Ultra-low specific on-resistance achieved in 3.3 kV-class SiC superjunction MOSFET. In 2021 33rd International Symposium on Power Semiconductor Devices and ICs (ISPSD) 83–86 (IEEE, 2021).

  48. Kosugi, R. et al. Breaking the theoretical limit of 6.5 kV-class 4H-SiC super-junction (SJ) MOSFETs by trench-filling epitaxial growth. In 2019 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD) 39–42 (IEEE, 2019).

  49. Xiao, M. et al. First demonstration of vertical superjunction diode in GaN. In 2022 International Electron Devices Meeting (IEDM) 35.6.1–35.6.4 (IEEE, 2022).

  50. Ma, Y. et al. 1 kV self-aligned vertical GaN superjunction diode. IEEE Electron. Device Lett. 45, 12–15 (2024).

    Article  Google Scholar 

  51. Qin, Y. et al. 2 kV, 0.7 mΩ∙cm2 vertical Ga2O3 superjunction Schottky rectifier with dynamic robustness. In 2023 International Electron Devices Meeting 1–4 (IEEE, 2023).

  52. Udrea, F. et al. Experimental demonstration, challenges, and prospects of the vertical SiC FinFET. In 34rd International Symposium on Power Semiconductor Devices and ICs (ISPSD) 253–256 (IEEE, 2022).

  53. Zhang, Y. et al. Large-area 1.2-kV GaN vertical power finFETs with a record switching figure of merit. IEEE Electron. Device Lett. 40, 75–78 (2019).

    MATH  Google Scholar 

  54. Nela, L. et al. Multi-channel nanowire devices for efficient power conversion. Nat. Electron. 4, 284–290 (2021).

    Article  MATH  Google Scholar 

  55. Kolar, J. W. & Friedli, T. The essence of three-phase PFC rectifier systems. In 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC) 1–27 (IEEE, 2011).

  56. Nabae, A., Takahashi, I. & Akagi, H. A new neutral-point-clamped PWM inverter. IEEE Trans. Ind. Appl. IA- 17, 518–523 (1981).

    Article  Google Scholar 

  57. Lesnicar, A. & Marquardt, R. An innovative modular multilevel converter topology suitable for a wide power range. In 2003 IEEE Bologna Power Tech Conference Proceedings 3 (IEEE, 2003).

  58. Yang, B., Lee, F. C., Zhang, A. J. & Huang, G. LLC resonant converter for front end DC/DC conversion. In APEC 17th Annual IEEE Applied Power Electronics Conference and Exposition Vol. 2, 1108–1112 (IEEE, 2002).

  59. Lee, F. C. & Li, Q. High-frequency integrated point-of-load converters: overview. IEEE Trans. Power Electron. 28, 4127–4136 (2013).

    Article  MATH  Google Scholar 

  60. Chen, Y. et al. SiC-based bidirectional three-phase CLLLC resonant converter with integrated magnetics for high-power on-board charger applications. In 2023 IEEE 2nd International Power Electronics and Application Symposium (PEAS) 350–355 (IEEE, 2023).

  61. Gautam, D. S., Musavi, F., Edington, M., Eberle, W. & Dunford, W. G. An automotive onboard 3.3-kW battery charger for PHEV application. IEEE Trans. Veh. Technol. 61, 3466–3474 (2012).

    Article  Google Scholar 

  62. Lai, J.-S. et al. A high-efficiency 3.3-kW bidirectional on-board charger. In 2015 IEEE 2nd International Future Energy Electronics Conference (IFEEC) 1–5 (IEEE, 2015).

  63. Kwon, M. & Choi, S. An electrolytic capacitorless bidirectional EV charger for V2G and V2H applications. IEEE Trans. Power Electron. 32, 6792–6799 (2017).

    Article  MATH  Google Scholar 

  64. Texas Instruments. Test Report: PMP22650 GaN-Based, 6.6-kW, Bidirectional, Onboard Charger Reference Design. https://www.ti.com/lit/ug/tidt249/tidt249.pdf?ts=1732599485622 (2021).

  65. Li, Y. et al. Optimal synergetic operation and experimental evaluation of an ultra-compact GaN-based three-phase 10 kW EV charger. IEEE Trans. Transp. Electri. 10, 2377–2396 (2024).

    Article  MATH  Google Scholar 

  66. Zhang, D., Leontaris, C., Huber, J. & Kolar, J. W. Optimal synergetic control of three-phase/level boost–buck voltage DC-Link AC/DC converter for very-wide output voltage range high-efficiency EV charger. IEEE J. Emerg. Sel. Top. Power Electron. 12, 28–42 (2024).

    Article  Google Scholar 

  67. Zhang, D., Huber, J. & Kolar, J. W. A three-phase synergetically controlled buck–boost current DC-link EV charger. IEEE Trans. Power Electron. 38, 15184–15198 (2023).

    Article  Google Scholar 

  68. Wolfspeed. CRD-06600FF065N-K 6.6 kW High Power Density Bi-directional EV On-Board Charger. https://assets.wolfspeed.com/uploads/2023/10/Wolfspeed_PRD-02490_CRD-06600FF065N-K_User_Guide.pdf (2023).

  69. Jin, F., Nabih, A., Li, Z. & Li, Q. A scalable matrix integrated transformer with controllable leakage inductance for a bi-directional resonant converter. IEEE Trans. Power Electron. 38, 10967–10984 (2023).

    Article  MATH  Google Scholar 

  70. Jin, F., Nabih, A., Yuan, T. & Li, Q. A high-efficiency high-density three-phase CLLC resonant converter with a universally derived three-phase integrated transformer for on-board-charger application. IEEE Trans. Power Electron. 39, 4350–4366 (2024).

    Article  MATH  Google Scholar 

  71. Wolfspeed. CRD-22DD12N 22 kW Bi-directional High Efficiency DC/DC Converter. https://assets.wolfspeed.com/uploads/2024/02/Wolfspeed_PRD-01218_CRD-22DD12N_22kW_Bi-Directional_High_Efficiency_DC-DC_Converter_User_Guide.pdf (2023).

  72. Mukherjee, S. & Barbosa, P. Design and optimization of an integrated resonant inductor with high-frequency transformer for wide gain range DC–DC resonant converters in electric vehicle charging applications. IEEE Trans. Power Electron. 38, 6380–6394 (2023).

    Article  MATH  Google Scholar 

  73. Yang, G., Draugedalen, E., Sorsdahl, T., Liu, H. & Lindseth, R. Design of high efficiency high power density 10.5 kW three phase on-board-charger for electric/hybrid vehicles. In PCIM Europe 2016; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management 1–7 (IEEE, 2016).

  74. Cao, Y. et al. Design and implementation of an 18 kW 500 kHz 98.8% efficiency high-density battery charger with partial power processing. IEEE J. Emerg. Sel. Top. Power Electron. 10, 7963–7975 (2022).

    Article  MATH  Google Scholar 

  75. Park, J., Kim, M. & Choi, S. Fixed frequency series loaded resonant converter based battery charger which is insensitive to resonant component tolerances. In Proceedings of the 7th International Power Electronics and Motion Control Conference 918–922 (IEEE, 2012).

  76. Zou, S., Lu, J., Mallik, A. & Khaligh, A. 3.3 kW CLLC converter with synchronous rectification for plug-in electric vehicles. In 2017 IEEE Industry Applications Society Annual Meeting 1–6 (IEEE, 2017).

  77. Yuan, T., Jin, F. & Li, Q. A 22-kW on-board charger (OBC) with an integrated planar inductor and transformer. In 2024 IEEE Applied Power Electronics Conference and Exposition (APEC) 1300–1304 (IEEE, 2024).

  78. Zhou, R. GE MW SiC PV inverter development. In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC) 3470 (IEEE, 2016).

  79. She, X., Losee, P., Hu, H., Earls, W. & Datta, R. Performance evaluation of 1.5 kV solar inverter with 2.5 kV silicon carbide mosfet. IEEE Trans. Ind. Appl. 55, 7726–7735 (2019).

    Article  Google Scholar 

  80. Shi, Y., Wang, L., Xie, R. & Li, H. Design and implementation of a 100 kW SiC filter-less PV inverter with 5 kW/kg power density and 99.2% CEC efficiency. In 2018 IEEE Applied Power Electronics Conference and Exposition (APEC) 393–398 (IEEE, 2018).

  81. Anderson, J. A. et al. All-SiC 99.4%-efficient three-phase T-type inverter with DC-side common-mode filter. Electron. Lett. 59, e12821 (2023).

    Article  Google Scholar 

  82. SMA America. Medium Voltage Power Station 4000-S2-US/4200-S2-US/4400-S2-US/4600-S2-US, Turnkey Solution for PV, Storage, and PV plus Storage Power Plants. https://files.sma.de/downloads/MVPS-S2-SC4_0-4_6-UP-US-DS-en-24.pdf (2023).

  83. Chan, C. C. & Chau, K. T. An overview of power electronics in electric vehicles. IEEE Trans. Ind. Electron. 44, 3–13 (1997).

    Article  MATH  Google Scholar 

  84. Liu, Z., Li, B., Lee, F. C. & Li, Q. High-efficiency high-density critical mode rectifier/inverter for WBG-device-based on-board charger. IEEE Trans. Ind. Electron. 64, 9114–9123 (2017).

    Article  MATH  Google Scholar 

  85. Patel, N., Lopes, L. A. C., Rathore, A. & Khadkikar, V. A soft-switched single-stage single-phase PFC converter for bidirectional plug-in EV charger. IEEE Trans. Ind. Appl. 59, 5123–5135 (2023).

    MATH  Google Scholar 

  86. Gong, X., Wang, G. & Bhardwaj, M. 6.6 kW three-phase interleaved totem pole PFC design with 98.9% peak efficiency for HEV/EV onboard charger. In 2019 IEEE Applied Power Electronics Conference and Exposition (APEC) 2029–2034 (IEEE, 2019).

  87. Kim, J.-S. et al. Design and implementation of a high-efficiency on-board battery charger for electric vehicles with frequency control strategy. In 2010 IEEE Vehicle Power and Propulsion Conference 1–6 (IEEE, 2010).

  88. Reimers, J., Dorn-Gomba, L., Mak, C. & Emadi, A. Automotive traction inverters: current status and future trends. IEEE Trans. Veh. Technol. 68, 3337–3350 (2019).

    Article  Google Scholar 

  89. Wolfspeed. XM3 Three-Phase Dual Inverter Reference Design. https://assets.wolfspeed.com/uploads/2024/01/Wolfspeed_PRD-06976_XM3_Three-Phase_Dual_Inverter_Reference_Design_User_Guide.pdf (2024).

  90. Hofmann, M., Eckardt, B. & Heckel, T. Inverter technology for high-speed drives like electric turbochargers. In IKMT 2015; 10. ETG/GMM-Symposium Innovative Small Drives and Micro-Motor Systems 1–6 (IEEE, 2015).

  91. Hayes, M. et al. Power dense and robust traction power inverter for the second-generation Chevrolet Volt extended-range EV. SAE Int. J. Alternative Powertrains 4, 145–152 (2015).

    Article  MATH  Google Scholar 

  92. Ogawa, T. et al. Verification of fuel efficiency improvement by application of highly effective silicon carbide power semiconductor to HV inverter. SAE Mobilus https://doi.org/10.4271/2016-01-1230 (2016).

  93. Texas Instruments. Design Guide: Automotive, High-Power, High-Performance SiC Traction Inverter Reference Design. https://www.ti.com/lit/ug/tiduf23/tiduf23.pdf?ts=1732680937859&ref_url=https%253A%252F%252Fwww.ti.com%252Ftool%252FTIDM-02014 (2023).

  94. NXP. EV Power Inverter Control Reference Platform Gen 2. https://www.nxp.com/docs/en/fact-sheet/EVINVERTERHD.pdf (2022).

  95. Allca-Pekarovic, A. et al. Loss modeling and testing of 800-V DC bus IGBT and SiC traction inverter modules. IEEE Trans. Transp. Electri. 10, 2923–2935 (2024).

    Article  MATH  Google Scholar 

  96. Zhu, J., Kim, H., Chen, H., Erickson, R. & Maksimović, D. High efficiency SiC traction inverter for electric vehicle applications. In 2018 IEEE Applied Power Electronics Conference and Exposition (APEC) 1428–1433 (IEEE, 2018).

  97. Raggl, K., Nussbaumer, T., Doerig, G., Biela, J. & Kolar, J. W. Comprehensive design and optimization of a high-power-density single-phase boost PFC. IEEE Trans. Ind. Electron. 56, 2574–2587 (2009).

    Article  Google Scholar 

  98. Soares, J. W. M. & Badin, A. A. High-efficiency interleaved totem-pole PFC converter with voltage follower characteristics. IEEE J. Emerg. Sel. Top. Power Electron. 11, 1879–1887 (2023).

    Article  MATH  Google Scholar 

  99. Texas Instruments. Test Report: PMP40988. Variable Frequency, ZVS, GaN-Based 5-kW Two-Phase Totem-Pole PFC Reference Design. https://www.ti.com/cn/lit/ug/tidt294/tidt294.pdf?ts=1732666998777 (2022).

  100. Liu, Z., Lee, F. C., Li, Q. & Yang, Y. Design of GaN-based MHz totem-pole PFC rectifier. IEEE J. Emerg. Sel. Top. Power Electron. 4, 799–807 (2016).

    Article  MATH  Google Scholar 

  101. Huang, Q., Ma, Q., Liu, P., Huang, A. Q. & de Rooij, M. A. 99% efficient 2.5-kW four-level flying capacitor multilevel GaN totem-pole PFC. IEEE J. Emerg. Sel. Top. Power Electron. 9, 5795–5806 (2021).

    Article  Google Scholar 

  102. Qin, S., Lei, Y., Ye, Z., Chou, D. & Pilawa-Podgurski, R. C. N. A high-power-density power factor correction front end based on seven-level flying capacitor multilevel converter. IEEE J. Emerg. Sel. Top. Power Electron. 7, 1883–1898 (2019).

    Article  Google Scholar 

  103. Kutschak, M.-A. & Escudero Rodriguez, M. 3300 W 52 V LLC with 600 V CoolMOS CFD7 and XMC. Infineon Technologies https://www.infineon.com/dgdl/Infineon-Evaluationboard_EVAL_3K3W_LLC_HB_CFD7-ApplicationNotes-v02_01-EN.pdf?fileId=5546d4626cb27db2016d3a60583725dc (2020).

  104. SynQor. Industrial DC-DC Power Converter IQ4H480FTx13. https://www.synqor.com/products/inqor-(1)/iq4h480ftx13 (2017).

  105. Vicor. DCM in a VIA Package DC-DC Converter DCM3714xD2H53E0yzz. https://www.vicorpower.com/documents/datasheets/DCM3714xD2H53E0yzz_ds.pdf (2018).

  106. Fei, C., Lee, F. C. & Li, Q. High-efficiency high-power-density LLC converter with an integrated planar matrix transformer for high-output current applications. IEEE Trans. Ind. Electron. 64, 9072–9082 (2017).

    Article  MATH  Google Scholar 

  107. Ranjram, M. K. & Perreault, D. J. A 380-12 V, 1-kW, 1-MHz converter using a miniaturized split-phase, fractional-turn planar transformer. IEEE Trans. Power Electron. 37, 1666–1681 (2022).

    Google Scholar 

  108. Wang, K., Gao, Q., Wei, G. & Yang, X. Integrated fractional-turn planar transformer for MHz and high-current applications. IEEE Trans. Power Electron. 38, 7374–7384 (2023).

    Article  MATH  Google Scholar 

  109. Nabih, A. & Li, Q. Design of 98.8% efficient 400-to-48-V LLC converter with optimized matrix transformer and matrix inductor. IEEE Trans. Power Electron. 38, 7207–7225 (2023).

    Article  MATH  Google Scholar 

  110. Nabih, A., Jin, F. & Li, Q. Efficient integrated transformer–inductor with high PCB utilization and optimized core. IEEE Trans. Ind. Electron. 71, 5653–5662 (2024).

    Article  MATH  Google Scholar 

  111. Chen, Y. et al. Virtual intermediate bus CPU voltage regulator. IEEE Trans. Power Electron. 37, 6883–6898 (2022).

    Article  Google Scholar 

  112. Baek, J. et al. Vertical stacked LEGO-PoL CPU voltage regulator. IEEE Trans. Power Electron. 37, 6305–6322 (2022).

    Article  Google Scholar 

  113. Zhu, Y., Ge, T., Ellis, N. M., Horowitz, L. & Pilawa-Podgurski, R. C. N. The switching bus converter: a high-performance 48-V-to-1-V architecture with increased switched-capacitor conversion ratio. IEEE Trans. Power Electron. 39, 8384–8403 (2024).

    Article  MATH  Google Scholar 

  114. Ellis, N. M., Abramson, R. A., Mahony, R. & Pilawa-Podgurski, R. C. N. The symmetric dual inductor hybrid converter for direct 48V-to-PoL conversion. IEEE Trans. Power Electron. 39, 7278–7289 (2024).

    Article  MATH  Google Scholar 

  115. Lou, X. & Li, Q. Single-stage 48 V/1.8 V converter with a novel integrated magnetics and 1000 W/in3 power density. IEEE Trans. Ind. Electron. 71, 6601–6611 (2024).

    Article  MATH  Google Scholar 

  116. MPS. MPC1100C-54-0002 High-Efficiency, Non-Isolated, Fixed Ratio, 300 W, Digital DC/DC Power Module. https://www.monolithicpower.com/en/documentview/productdocument/index/version/2/document_type/Datasheet/lang/en/sku/MPC1100C-54-0002/document_id/11049/ (2023).

  117. Ahmed, M. H., Lee, F. C. & Li, Q. Two-stage 48-V VRM with intermediate bus voltage optimization for data centers. IEEE J. Emerg. Sel. Top. Power Electron. 9, 702–715 (2021).

    Article  MATH  Google Scholar 

  118. Bose, B. K. Global energy scenario and impact of power electronics in 21st century. IEEE Trans. Ind. Electron. 60, 2638–2651 (2013).

    Article  MATH  Google Scholar 

  119. Moench, S. et al. Enhancing electrocaloric heat pump performance by over 99% efficient power converters and offset fields. IEEE Access. 10, 46571–46588 (2022).

    Article  Google Scholar 

  120. Gan, Y. et al. Greenhouse gas emissions embodied in the U.S. solar photovoltaic supply chain. Environ. Res. Lett. 18, 104012 (2023).

    Article  MATH  Google Scholar 

  121. Ghosh, A. Possibilities and challenges for the inclusion of the electric vehicle (EV) to reduce the carbon footprint in the transport sector: a review. Energies 13, 2602 (2020).

    Article  MATH  Google Scholar 

  122. European Environment Agency. Greenhouse Gas Emission Intensity of Electricity Generation. https://www.eea.europa.eu/en/analysis/maps-and-charts/co2-emission-intensity-15 (2024).

  123. Shively, B. How Much Primary Energy Is Wasted Before Consumers See Value from Electricity? Enerdynamics https://www.enerdynamics.com/Energy-Currents_Blog/How-Much-Primary-Energy-Is-Wasted-Before-Consumers-See-Value-from-Electricity.aspx (2024).

  124. Campbell, M. Lithium Battery Charging Best Practices (How to & Other Tips). Discover https://blog.discoverbattery.com/understanding-charging (2023).

  125. Teplan, D. Electric car mileage — how good are modern EVs really? JustWe https://justwe-gpi.com/ev-charging/electric-car-mileage/ (2022).

  126. IEA. Comparative life-cycle greenhouse gas emissions of a mid-size BEV and ICE vehicle. Charts – data & statistics. https://www.iea.org/data-and-statistics/charts/comparative-life-cycle-greenhouse-gas-emissions-of-a-mid-size-bev-and-ice-vehicle (2021).

  127. US EPA. Greenhouse Gas Emissions from a Typical Passenger Vehicle. https://www.epa.gov/greenvehicles/greenhouse-gas-emissions-typical-passenger-vehicle (2016).

  128. Khan, M. I. Comparative well-to-tank energy use and greenhouse gas assessment of natural gas as a transportation fuel in Pakistan. Energy Sustain. Dev. 43, 38–59 (2018).

    Article  MATH  Google Scholar 

  129. US Department of Energy. Alternative Fuels Data Center: Maps and Data — Annual Vehicle Miles Traveled in the United States. https://afdc.energy.gov/data/10315 (2024).

  130. Siddik, M. A. B., Shehabi, A. & Marston, L. The environmental footprint of data centers in the United States. Environ. Res. Lett. 16, 064017 (2021).

    Article  MATH  Google Scholar 

  131. Greenex DC. Why Data Centers Are Affecting a Carbon Footprint? https://greenexdc.com/why-data-centers-are-affecting-a-carbon-footprint/ (2022).

  132. Soles, N. Demand growth offers opportunities for data centers. CPower Energy https://cpowerenergy.com/demand-growth-offers-opportunities-for-data-centers/ (2024).

  133. Brand, L. & Rose W. Measure Guideline: High Efficiency Natural Gas Furnaces (US Department of Energy, 2012); https://www.nrel.gov/docs/fy13osti/55493.pdf#page=1.00&gsr=0.

  134. Abdel-Salam, M. R. H., Zaidi, A. & Cable, M. Field study of heating performance of three ground-source heat pumps in Canadian single-family houses. Energy Build. 247, 110959 (2021).

    Article  MATH  Google Scholar 

  135. Smith, L., Ibn-Mohammed, T., Koh, S. C. L. & Reaney, I. M. Life cycle assessment and environmental profile evaluations of high volumetric efficiency capacitors. Appl. Energy 220, 496–513 (2018).

    Article  Google Scholar 

  136. Vasan, A., Sood, B. & Pecht, M. Carbon footprinting of electronic products. Appl. Energy 136, 636–648 (2014).

    Article  MATH  Google Scholar 

  137. Freitag, C. et al. The real climate and transformative impact of ICT: a critique of estimates, trends, and regulations. Patterns 2, 100340 (2021).

    Article  MATH  Google Scholar 

  138. Clément, L.-P. P.-V. P., Jacquemotte, Q. E. S. & Hilty, L. M. Sources of variation in life cycle assessments of smartphones and tablet computers. Environ. Impact Assess. Rev. 84, 106416 (2020).

    Article  MATH  Google Scholar 

  139. Pirson, T. et al. The environmental footprint of IC production: review, analysis, and lessons from historical trends. IEEE Trans. Semicond. Manuf. 36, 56–67 (2023).

    Article  Google Scholar 

  140. Pelcat, M. GHG Emissions of Semiconductor Manufacturing in 2021 (Univ. Rennes/INSA/IETR, 2023); https://hal.science/hal-04112708.

  141. Zhang, B. & Wang, S. A survey of EMI research in power electronics systems with wide-bandgap semiconductor devices. IEEE J. Emerg. Sel. Top. Power Electron. 8, 626–643 (2020). This paper reviews the electromagnetic interference challenges, methods and solutions for high-frequency and high-speed power electronics systems based on wide-bandgap power semiconductors.

    Article  MATH  Google Scholar 

  142. Huber, J., Imperiali, L., Menzi, D., Musil, F. & Kolar, J. W. Energy efficiency is not enough! IEEE Power Electron. Mag. 11, 18–31 (2024). This paper presents forward-looking solutions to the challenge of addressing carbon emissions and long-term sustainability in power electronics for energy applications.

    Article  Google Scholar 

  143. Sangwongwanich, A., Stroe, D.-I., Mi, C. & Blaabjerg, F. Sustainability of power electronics and batteries: a circular economy approach. IEEE Power Electron. Mag. 11, 39–46 (2024).

    Article  Google Scholar 

  144. Burkart, R. M. & Kolar, J. W. Comparative life cycle cost analysis of Si and SiC PV converter systems based on advanced η–ρ–σ multiobjective optimization techniques. IEEE Trans. Power Electron. 32, 4344–4358 (2017).

    Article  Google Scholar 

  145. Zhu, H. et al. Future data center energy-conservation and emission-reduction technologies in the context of smart and low-carbon city construction. Sustain. Cities Soc. 89, 104322 (2023).

    Article  MATH  Google Scholar 

  146. Saito, W. A future outlook of power devices from the viewpoint of power electronics trends. IEEE Trans. Electron. Dev. 71, 1356–1364 (2024).

    Article  MATH  Google Scholar 

  147. She, X., Huang, A. Q. & Burgos, R. Review of solid-state transformer technologies and their application in power distribution systems. IEEE J. Emerg. Sel. Top. Power Electron. 1, 186–198 (2013).

    Article  MATH  Google Scholar 

  148. Dong, D. et al. A modular SiC high-frequency solid-state transformer for medium-voltage applications: design, implementation, and testing. IEEE J. Emerg. Sel. Top. Power Electron. 7, 768–778 (2019).

    Article  MATH  Google Scholar 

  149. Mocevic, S. et al. Power cell design and assessment methodology based on a high-current 10-kV SiC MOSFET half-bridge module. IEEE J. Emerg. Sel. Top. Power Electron. 9, 3916–3935 (2021).

    Article  MATH  Google Scholar 

  150. Mazumder, S. K. et al. Overview of wide/ultrawide bandgap power semiconductor devices for distributed energy resources. IEEE J. Emerg. Sel. Top. Power Electron. 11, 3957–3982 (2023).

    Article  MATH  Google Scholar 

  151. Williams Northeast Supply Enhancement. Natural Gas: The Facts — Learn the Facts for Natural Gas Customer and Its Environmental Benefits. https://northeastsupplyenhancement.com/wp-content/uploads/2016/11/Natural-Gas-Facts.pdf (2016).

  152. Haab Company Incorporated. How to Compare Oilheat. https://www.fchaab.com/fuels/how-compare-oilheat/ (2024).

  153. EEA and Norway Grants. Conversion Guidelines — Greenhouse Gas Emissions. https://www.eeagrants.gov.pt/media/2776/conversion-guidelines.pdf (2021).

  154. Infineon Technologies. Sustainability at Infineon — Supplementing the Annual Report 2022. https://www.infineon.com/dgdl/Sustainability+at+Infineon+2022.pdf?fileId=8ac78c8b84a33cb40184bd6a9c8f0035 (2023).

  155. Onesmi. Onward: for People and Planet — 2022 Sustainability Report. https://www.onsemi.com/site/pdf/Sustainability_Report_2022.pdf (2023).

  156. STMicroelectronics. 2023 Sustainability Report — 2022 Performance. https://sustainabilityreports.st.com/sr23/_assets/downloads/ST-Sustainability-report-2023.pdf (2023).

  157. Mitsubishi Electric. Sustainability Report 2023. https://www.mitsubishielectric.com/en/sustainability/reports/pdf/2023/Sustainability_report_2023_all.pdf (2023).

  158. Nexperia. Driving Positive Change — Nexperia’s 2022 Sustainability Report. https://www.nexperia.com/dam/jcr:8b612865-5f18-42f4-bbae-6b5acc3531fe/NEXPERIA_Sustainability_Report_2022%20(1).pdf (2023).

  159. Wolfspeed. 2023 Sustainability Report. https://assets.wolfspeed.com/uploads/2023/10/Wolfspeed_Sustainability_Report_2023.pdf (2023).

  160. Win Semiconductors. 2022 ESG Report. https://www.winfoundry.com/zh-TW/Base/DownLoadStaticFile?FileName=2022WINESG_EN.pdf (2023).

  161. Infineon Technologies. IKW30N65ET7. Low Loss Duopack: IGBT 7. https://www.infineon.com/dgdl/Infineon-IKW30N65ET7-DataSheet-v01_10-EN.pdf?fileId=5546d46272e49d2a017351beb15f57f2 (2023).

  162. Infineon Technologies. IHW30N90T. Low Loss DuoPack: IGBT in TrenchStop and Fieldstop Technology with Anti-parallel Diode. https://www.mouser.com/datasheet/2/196/infns12974_1-2270958.pdf (2008).

  163. Infineon Technologies. IGW25N120H3. High Speed IGBT in Trench and Fieldstop Technology. https://www.infineon.com/dgdl/Infineon-IGW25N120H3-DataSheet-v02_01-EN.pdf?fileId=db3a304325305e6d01258d0f50a8369e (2014).

  164. IXYS Corporation. IXYH24N170C. High Voltage XPT IGBT. https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/2152/IXYH24N170C.pdf (2016).

  165. STMicroelectronics. SCTL90N65G2V. Silicon Carbide Power MOSFET 650 V, 18 mΩ typ., 40 A in a PowerFLAT 8 × 8 HV Package. https://www.st.com/resource/en/datasheet/sctl90n65g2v.pdf (2020).

  166. ON Semiconductor Corporation. NVH4L060N090SC1. Silicon Carbide (SiC) MOSFET — 60 mOhm, 900 V, M2, TO-247-4L. https://www.onsemi.cn/pdf/datasheet/nvh4l060n090sc1-d.pdf (2022).

  167. Infineon Technologies. IMBG120R030M1H. CoolSiC 1200 V SiC Trench MOSFET with XT Interconnection Technology. https://www.infineon.com/dgdl/Infineon-IMBG120R030M1H-DataSheet-v02_02-EN.pdf?fileId=5546d462749a7c2d0174b0eca774325c (2020).

  168. GeneSiC Semiconductor. G3R45MT17D. 1700 V 45 mΩ SiC MOSFET. https://genesicsemi.com/sic-mosfet/G3R45MT17D/G3R45MT17D.pdf (2021).

  169. GaN System. GS66516B. Bottom-Side Cooled 650 V E-Mode GaN Transistor. https://gansystems.com/wp-content/uploads/2021/12/GS66516B-DS-Rev-211025.pdf (2021).

  170. Infineon Technologies. IKW15N120BH6. Sixth Generation, High Speed Soft Switching Series. https://www.infineon.com/dgdl/Infineon-IKW15N120BH6-DataSheet-v02_01-EN.pdf?fileId=5546d462636cc8fb01638801d11316bd (2018).

  171. Infineon Technologies. AIMZHN120R080M1T. CoolSiC1200 V SiC Trench MOSFET. https://www.infineon.com/dgdl/Infineon-AIMZHN120R080M1T-DataSheet-v01_00-EN.pdf?fileId=8ac78c8c8c3de074018c68fc59a44a9e (2023).

  172. Efficient Power Conversion Corporation (EPC). EPC2023. Enhancement Mode Power Transistor. https://epc-co.com/epc/Portals/0/epc/documents/datasheets/EPC2023_datasheet.pdf (2022).

  173. Infineon Technologies. IPD031N03LG. OptiMOSTM3 Power-Transistor. https://www.infineon.com/dgdl/Infineon-IPD031N03L-DS-v02_01-en.pdf?fileId=db3a30432313ff5e01239e2ed62a6fff (2010).

  174. Efficient Power Conversion Corporation (EPC). EPC2053. Enhancement Mode Power Transistor. https://epc-co.com/epc/Portals/0/epc/documents/datasheets/EPC2053_Datasheet.pdf (2024).

  175. Infineon Technologies. IPA082N10NF2S. StrongIRFETTM2 Power-Transistor. https://www.infineon.com/dgdl/Infineon-IPD031N03L-DS-v02_01-en.pdf?fileId=db3a30432313ff5e01239e2ed62a6fff (2022).

  176. Efficient Power Conversion Corporation (EPC). EPC2215. Enhancement Mode Power Transistor. https://epc-co.com/epc/Portals/0/epc/documents/datasheets/EPC2215_datasheet.pdf (2023).

  177. Infineon Technologies. IPP320N20N3G. OptiMOSTM3 Power-Transistor. https://www.infineon.com/dgdl/Infineon-IPP_B_I_320N20N3G-DS-v02_03-en.pdf?fileId=db3a3043243b5f170124967064ba184a (2011).

  178. Wolfspeed Inc. C3M0045065D. Silicon Carbide Power MOSFET C3MTM MOSFET Technology N-Channel Enhancement Mode. https://assets.wolfspeed.com/uploads/2024/01/Wolfspeed_C3M0045065D_data_sheet.pdf (2024).

  179. Infineon Technologies. IPWS65R035CFD7A. 650 V CoolMOSª CFD7A SJ Power Device. https://www.infineon.com/dgdl/Infineon-IPWS65R035CFD7A-DataSheet-v02_01-EN.pdf?fileId=5546d46272e49d2a01730e4a600f28f9 (2021).

  180. Wolfspeed Inc. C3M0065090D. Silicon Carbide Power MOSFET C3MTM MOSFET Technology N-Channel Enhancement Mode. https://assets.wolfspeed.com/uploads/2024/01/Wolfspeed_C3M0065090D_data_sheet.pdf (2024).

  181. Infineon Technologies. IPW95R060PFD7. 950 V CoolMOSª PFD7 SJ Power Device. https://www.infineon.com/dgdl/Infineon-IPW95R060PFD7-DataSheet-v02_01-EN.pdf?fileId=8ac78c8c81ae03fc0181f712f9bc2e5f (2022).

  182. Wolfspeed Inc. C3M0040120D. Silicon Carbide Power MOSFET C3MTM MOSFET Technology N-Channel Enhancement Mode. https://assets.wolfspeed.com/uploads/2024/01/Wolfspeed_C3M0040120D_data_sheet.pdf (2024).

  183. Wolfspeed Inc. C2M0045170P. Silicon Carbide Power MOSFET C2MTM MOSFET Technology N-Channel Enhancement Mode. https://assets.wolfspeed.com/uploads/2023/12/Wolfspeed_C2M0045170P_data_sheet.pdf (2024).

  184. GeneSiC Semiconductor. G2R50MT33J. 3300 V 50 mΩ SiC MOSFET. https://genesicsemi.com/sic-mosfet/G2R50MT33K/G2R50MT33K.pdf (2023).

Download references

Acknowledgements

The authors at Virginia Tech acknowledge support from the Center for Power Electronics Systems (CPES) Industry Consortium. H.W. acknowledges support from Hong Kong Research Grant Council (General Research Fund grant no. 17205922 and Areas of Excellence Scheme grant no. AoE/E-101/23-N). The authors thank D. Boroyevich for his guidance and the attendees of the Three Corners Power Electronics Extended Collaboration (3C-PEEC) Workshop for their technical insights. The authors also thank B. Wang for help in designing Figs. 1, 2, 3 and 5, J. Feng for collating data for Figs. 3 and 4 and for help in designing Fig. 4, and X. Yang for collating data for Fig. 2.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and D.D. researched data for the article. All authors contributed substantially to discussion of the content. Y.Z., D.D., Q.L. and H.W. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Yuhao Zhang, Dong Dong, Qiang Li or Han Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Electrical Engineering thanks Wataru Saito and Shuo Wang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

California Energy Commission (CEC) efficiency and voltage standards: https://pvpmc.sandia.gov/modelling-guide/dc-to-ac-conversion/cec-inverter-test-protocol/

Greenhouse Gas Protocol: https://ghgprotocol.org/

Paris Agreement: https://www.un.org/en/climatechange/net-zero-coalition

Unicoi Gas Utility District: https://ucgud.com/about/natural-gas/

US Energy Information Administration: https://www.eia.gov/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Dong, D., Li, Q. et al. Wide-bandgap semiconductors and power electronics as pathways to carbon neutrality. Nat Rev Electr Eng 2, 155–172 (2025). https://doi.org/10.1038/s44287-024-00135-5

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44287-024-00135-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing