Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Full color micro-displays for augmented and virtual reality applications require a pixel pitch below 10 µm. Here, a metal organic vapor phase epitaxy method was demonstrated to grow high quality red-green-blue InGaN quantum wells on InGaN nanopyramids of less than 1 µm diameter with an In content up to 40%
Triple-cation perovskite solar cells are more stable than formamidinium lead iodide but possess more defects. Here, grain boundary cracks and passivate interfacial defects are patched using ammonium formate which forms a stable adduct on the perovskite surface.
Surface features can be designed to modulate the dynamic and kinetic behaviours of liquid droplets but require robust wettability and low-cost fabrication. Here, a surface packed with nanosized caltrops can effectively block lateral motion and engineered to allow directional droplet maneuvering
Artificial silk fabrication relies on extrusion-based methods that lack true biomimetic replication. Here, silk-like fibres composed of co-aligned nanofibrillar bundles are pulled from films produced at the air-water interface
Remote epitaxy is used to grow semiconductor structures on 2D material covered substrates. Here, a method for fabricating ultrathin 2D amorphous carbon layers on III-V semiconductors is demonstrated using plasma-enhanced chemical vapor deposition as a universal template for remote epitaxy.
Weyl fermions are chiral massless fermions with interesting exotic properties. Here, chlorine doping of Co3Sn2S2 single crystals is found to shift the Fermi energy towards the Weyl points, enhancing its Weyl semimetal signatures such as a ninefold increase in magnetoresistance and a significantly larger anomalous Hall conductivity.
The atomic scale mechanisms of dental enamel aging are still not well understood. Here, atom probe tomography was used to compare enamel from young and senior adults to give insight about fluorine concentration in tooth nanocrystals.
The atomistic components that drive entropy of fusion and ultimately characterize latent heat of melting are not well defined. Here, inelastic neutron scattering and machine-learned molecular dynamics are used to quantify these thermodynamic contributions to the entropy of fusion in pure elements.
Mn-doped UO2 is a promising nuclear fuel, and is predicted to undergo favourable grain growth during service. This study uses diffraction, spectroscopy and ab initio calculations to study the effect of redox and structure, finding that grain growth may in fact be suppressed.
Forest fire prevention methods are often not environmentally friendly and are limited in remote areas. Here, a gelatin-based fire spray extends ignition time and reduces the heat release of fires while also acting as leaf and soil fertilizers to aid plant growth.
Development of mechanically flexible batteries has stalled due to their capacity decay, limited power and energy, and safety issues. Here, advances in flexible electrodes and cell architectures across Li-based batteries are Reviewed, correlating microstructure, performance, mechanical pliability, and safety.
While promising for spintronics, most non-collinear spiral magnets have low ordering temperatures which limit their implementation in devices. Here, spherical neutron polarimetry and single-crystal neutron diffraction data demonstrate the non-collinear chiral nature of magnetic order in YBaCuFeO5 single crystals up to 200 K.
Automated data extraction from materials science literature using artificial intelligence and natural language processing techniques is key to advance materials discovery. Here, the authors present a framework to automatically extract polymer-property data from full-text journal articles using commercially available and open-source large language models.
The mutual control of magnetization and polarization in multiferroics is key to spintronic devices, but ensuring its stability at room temperature is essential for practical applications. Here, magnetic control of ferroelectric polarization in Tb2(MoO4)3 is demonstrated up to 432 K, ensuring the stability of magnetoelectric effect well above room temperature.
Block copolymers have diverse chain architectures which self-assemble in many ways makes it difficult to identify the stability windows of the mesophases. Here, an automated workflow using graph-enhanced self-consistent field theory allows for computation of arbitrary chain architectures and their phase behavior.
Synthesizing phase-pure zirconium-porphyrin metal-organic frameworks is challenging. This Perspective discusses different synthetic approaches and investigations to guide conditions to achieve phase-pure zirconium-porphyrin metal-organic frameworks.
Ultrafast control of ferroelectricity and magnetism by light is essential for multifunctional devices. Here, photocarrier injection into multiferroic BiFeO3 thin films can simultaneously realize the ultrafast switching of electric dipoles and magnetic interaction due to the strong coupling between the localized photocarrier and lattice vibrations.
Research into engineering alloys is often driven by the need to simultaneously improve strength and toughness. Here, an equimolar CrCoNi medium-entropy alloy achieves an almost three times increase in yield strength without sacrificing toughness, attributed to a partially recrystallized microstructure.
Ferroelectricity in solar cells can improve charge carrier separation and provide higher than bandgap device voltages. Here, first-principles calculations in strained BaZrS3 reveal ferroelectricity and exotic properties akin to halide perovskites for photovoltaics applications.