Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Dynamic control of incoherent light sources at ultrafast timescales is tremendously challenging. Now, a technique using a spatially structured optical pump and semiconductor metasurfaces has been developed that dynamically steers sub-picosecond pulses of ultrafast incoherent emission.
Strong coupling of a 2D hole gas in the quantum Hall state dressed with a microcavity mode is studied, showing that tuning the strength of the magnetic field, and therefore the density of states in the system, can select specific spin-dependent light–matter coupling.
Spatial-frequency tracking adaptive beacon light-field encoded endoscopy enables imaging through a single multimode fibre under bending and twisting. In vivo imaging with subcellular resolution is demonstrated in mice models.
Researchers design and demonstrate a scalable yet compact chip-based link architecture that may enable terabit-scale optical interconnects for hyperscale data centres.
Photonic radar is exploited for non-contact vital sign detection with a demonstration on a cane toad with a view to application in humans. Optical signals generated from the system are also explored for LiDAR-based vital sign detection, which may yield improved accuracy and system robustness.
Two-photon excitation with mid- and near-infrared pulses encodes bond selectivity in fluorescence imaging. Single-molecule imaging and spectroscopy is demonstrated on individual fluorophores as well as various labelled biological targets.
Large perovskite nanocrystals are synthesized to increase the cryogenic exciton radiative rate. At liquid helium temperatures, single photons from perovskite nanocrystals coalesce at a beam splitter, signalling the existence of indistinguishable photon emission.
A special-purpose quantum simulator, based on a coherently controlled broadband quantum frequency comb produced in a chip-scale dynamically modulated monolithic lithium niobate microresonator, is demonstrated, opening paths for chip-scale implementation of large-scale analogue quantum simulation and computation in the time–frequency domain.
An optoelectronic synapse is realized by incorporating a photoactive layer in an organic electrochemical transistor. Writing and erasing multiple conductance states allow optical signals to be recognized and the learning process of the human brain to be mimicked.
Near-infrared-emitting tin-based perovskite light-emitting diodes with greatly improved efficiency are realized by the use of additives during fabrication.
An integrated electro-optic isolator on thin-film lithium niobate enables non-reciprocal isolation by microwave-driven travelling-wave phase modulation. The isolator exhibits a maximum optical isolation of 48.0 dB at around 1,553 nm and an on-chip insertion loss of 0.5 dB.
Two papers in Science demonstrate tracking of the stepping motion of the kinesin motor protein with nanometric spatial precision and sub-millisecond temporal resolution by using MINFLUX, a highly photon-efficient single-molecule localization technique.
A deterministic single-photon two-qubit SWAP gate between polarization and spatial-momentum is demonstrated on a silicon chip. A two-qubit swapping process fidelity of 94.9% is obtained. The coherence preservation of the SWAP gate process is verified by two-photon interference.
A common belief about boson bunching—fully indistinguishable bosons exhibit the utmost bunching—is theoretically disproved with seven photons of distinct polarization in a seven-mode interferometric process. Enhanced bunching could thus be observed with partially distinguishable photons.
Super-resolution imaging based on autocorrelation with two-step deconvolution (SACD) enables recording super-resolution images with 128-nm spatial resolution over a field of view of 2.0 mm × 1.4 mm within a 10-min acquisition time.
Introduction of a diffractive axicon in a pulse shaper enables imparting topological–spectral correlation to ultrafast pulses over 200 nm in the visible region and with topological charges up to 80.