Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 272 results
Advanced filters: Author: Christina Y. Yu Clear advanced filters
  • The authors demonstrate a nanoscale particle-exchange heat engine using a diradical molecule coupled to superconducting electrodes. By driving a phase transition into the Yu-Shiba-Rusinov regime, they achieve a fivefold boost in thermoelectric power, enabling advances in cryogenic heat recovery and quantum cooling.

    • Serhii Volosheniuk
    • Damian Bouwmeester
    • Pascal Gehring
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-8
  • An inherently explainable AI trained on 1,015 expert-annotated prostate tissue images achieved strong Gleason pattern segmentation while providing interpretable outputs and addressing interobserver variability in pathology.

    • Gesa Mittmann
    • Sara Laiouar-Pedari
    • Titus J. Brinker
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-17
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Federated learning (FL) algorithms have emerged as a promising solution to train models for healthcare imaging across institutions while preserving privacy. Here, the authors describe the Federated Tumor Segmentation (FeTS) challenge for the decentralised benchmarking of FL algorithms and evaluation of Healthcare AI algorithm generalizability in real-world cancer imaging datasets.

    • Maximilian Zenk
    • Ujjwal Baid
    • Spyridon Bakas
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-20
  • Sequencing analyses of human prefrontal cortex from donors ranging in age from 0.4 to 104 years show that ageing correlates with an accumulation of somatic mutations in short housekeeping genes and a reduction in the expression of these genes.

    • Ailsa M. Jeffries
    • Tianxiong Yu
    • Michael A. Lodato
    ResearchOpen Access
    Nature
    Volume: 646, P: 657-666
  • Genome-wide analyses identify 30 independent loci associated with obsessive–compulsive disorder, highlighting genetic overlap with other psychiatric disorders and implicating putative effector genes and cell types contributing to its etiology.

    • Nora I. Strom
    • Zachary F. Gerring
    • Manuel Mattheisen
    ResearchOpen Access
    Nature Genetics
    Volume: 57, P: 1389-1401
  • Lineage tracing in mice identifies a subpopulation of basal cells that express Tmprss2 and Nkx3 as the origin of ERG-driven prostate cancer. Upon expansion, these cells show an enrichment for STAT3 chromatin binding and elevated expression of KMT2A and DOT1L as dependencies for ERG oncogenicity.

    • Weiran Feng
    • Erik Ladewig
    • Charles L. Sawyers
    ResearchOpen Access
    Nature Genetics
    Volume: 57, P: 2177-2191
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • NIPBL perturbation activates long terminal repeat (LTR)-derived alternative promoters due to reorganization of chromatin’s hierarchical structure, leading to LTR co-option and oncogene activation in melanoma cell lines.

    • Elissa W. P. Wong
    • Merve Sahin
    • Ping Chi
    ResearchOpen Access
    Nature Genetics
    Volume: 57, P: 1754-1765
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Ni, Wei, Vona and colleagues use human brain organoids to dissect patient AIRIM variants associated with neurodevelopmental features. A subset of variants impaired ribosome production and protein synthesis, and delayed radial glial cell specification.

    • Chunyang Ni
    • Yudong Wei
    • Michael Buszczak
    ResearchOpen Access
    Nature Cell Biology
    Volume: 27, P: 1240-1255
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • A cross-ancestry meta-analysis of genome-wide association studies identifies association signals for stroke and its subtypes at 89 (61 new) independent loci, reveals putative causal genes, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as potential drug targets, and provides cross-ancestry integrative risk prediction.

    • Aniket Mishra
    • Rainer Malik
    • Stephanie Debette
    ResearchOpen Access
    Nature
    Volume: 611, P: 115-123
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Transition metal oxides constitute a promising class of catalysts for the oxygen reduction reaction, but they are found generally to be less active than Pt. Now, computational analyses and high-throughput experiments are used to understand the reasons behind the lower activity, and strategies to improve them are proposed.

    • Hao Li
    • Sara Kelly
    • Jens K. Nørskov
    Research
    Nature Catalysis
    Volume: 4, P: 463-468
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • A CRISPR knock-in strategy that uses endogenous gene regulatory mechanisms can engineer ‘armoured’ CAR T cells that secrete proinflammatory cytokines directly within a tumour without causing toxicity, leading to prolonged survival in mice.

    • Amanda X. Y. Chen
    • Kah Min Yap
    • Paul A. Beavis
    ResearchOpen Access
    Nature
    Volume: 644, P: 241-251
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • In this Resource, the authors present FedProt, a tool that enables privacy-preserving, federated differential protein abundance analysis across multiple institutions. Its results match the results of centralized analysis, enabling secure, collaborative proteomics without sensitive data sharing.

    • Yuliya Burankova
    • Miriam Abele
    • Olga Zolotareva
    ResearchOpen Access
    Nature Computational Science
    Volume: 5, P: 675-688
  • Several patients with metastatic prostate cancer have been shown to harbour tumours with markedly high mutation rates. Here, the authors characterise hypermutation in advanced prostate cancer samples and show that these samples have somatic mismatch repair gene mutations and microsatellite instability.

    • Colin C. Pritchard
    • Colm Morrissey
    • Peter S. Nelson
    ResearchOpen Access
    Nature Communications
    Volume: 5, P: 1-6
  • Modeling analysis from the Global Dietary Database estimated that 70% of new global cases of type 2 diabetes are attributable to suboptimal intake of 11 dietary factors, with substantial differences in dietary risks across world regions and nations.

    • Meghan O’Hearn
    • Laura Lara-Castor
    • Rubina Hakeem
    ResearchOpen Access
    Nature Medicine
    Volume: 29, P: 982-995
  • Increased effectiveness of anti-cancer chimeric antigen receptor T cell therapy is associated with a stem-like phenotype through increased expression of FOXO1.

    • Jack D. Chan
    • Christina M. Scheffler
    • Phillip K. Darcy
    ResearchOpen Access
    Nature
    Volume: 629, P: 201-210
  • From 1980 to 2018, the levels of total and non-high-density lipoprotein cholesterol increased in low- and middle-income countries, especially in east and southeast Asia, and decreased in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe.

    • Cristina Taddei
    • Bin Zhou
    • Majid Ezzati
    ResearchOpen Access
    Nature
    Volume: 582, P: 73-77