We investigate how random scattering modulates the optical properties, from terahertz to ultraviolet, of a three-dimensional graphene network based on interconnected high-quality 2-Dimensional graphene layers. We show how the connectivity and morphology of these materials allow a broadband interaction with light. The 3D graphene networks behave like a high-pass optical filter due to spatially multiscale random scatterers, corresponding to pores and graphene branches in the 3D network. We develop a model based on the Radiative Transfer theory describing the interaction of the network with light, from which we estimate the photon scattering mean free path.
- Luca Tomarchio
- Salvatore Macis
- Stefano Lupi