Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 1916 results
Advanced filters: Author: DAVID M. GATES Clear advanced filters
  • Qutrits, or quantum three-level systems, can provide advantages over qubits in certain quantum information applications, and high-fidelity single-qutrit gates have been demonstrated. Goss et al. realize high-fidelity entangling gates between two superconducting qutrits that are universal for ternary computation.

    • Noah Goss
    • Alexis Morvan
    • Irfan Siddiqi
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-6
  • Here, using long-read RNA sequencing, SILAC proteomics, and cryo-EM, the authors show that loss of mitochondrial methylation impairs rRNA processing and ribosome maturation, leading to unprocessed rRNA accumulation and defective monosome assembly.

    • Ruth I. C. Glasgow
    • Vivek Singh
    • Anna Wredenberg
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-18
  • Enduring changes in synaptic efficacy are highly sensitive to stress. Here, the authors show that astrocytic delivery of metabolites has an important role in the stress-mediated impairment of synaptic plasticity.

    • Ciaran Murphy-Royal
    • April D. Johnston
    • Grant R. Gordon
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-18
  • There is a trade-off between achieving fast qubit control and preserving long qubit lifetimes. In this work, the authors demonstrate single qubit gates by driving a transmon qubit parametrically at 1/3 of its frequency, creating fast, high-fidelity gates while protecting the qubit lifetime and mitigating heating.

    • Mingkang Xia
    • Chao Zhou
    • Michael Hatridge
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-7
  • Mutations in the cation channel PKD2 cause human autosomal dominant polycystic kidney disease but its channel function and gating mechanism are poorly understood. Here authors study PKD2 using electrophysiology and cryo-EM, which identifies hydrophobic gates and proposes a gating mechanism for PKD2.

    • Wang Zheng
    • Xiaoyong Yang
    • Xing-Zhen Chen
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-14
  • The central amygdala relies on inhibitory circuitry to encode fear memories, but how this information is acquired and expressed in these connections is unknown. Two new papers use a combination of cutting-edge technologies to reveal two distinct microcircuits within the central amygdala, one required for fear acquisition and the other critical for conditioned fear responses. Understanding this architecture provides a strong link between activity in a specific circuit and particular behavioural consequences.

    • Wulf Haubensak
    • Prabhat S. Kunwar
    • David J. Anderson
    Research
    Nature
    Volume: 468, P: 270-276
  • Researchers describe a mechanism capable of compressing fast and intense X-ray pulses through the rapid loss of crystalline periodicity. It is hoped that this concept, combined with X-ray free-electron laser technology, will allow scientists to obtain structural information at atomic resolutions.

    • Anton Barty
    • Carl Caleman
    • Henry N. Chapman
    Research
    Nature Photonics
    Volume: 6, P: 35-40
  • A measurement strategy is described that is able to read out the parity of minimal two-site Kitaev chains in real time, by coupling two Majoranas and resolving their quantum capacitance.

    • Nick van Loo
    • Francesco Zatelli
    • Leo P. Kouwenhoven
    Research
    Nature
    Volume: 650, P: 334-339
  • Cholera remains a significant public health burden in sub-Saharan Africa, but the mechanisms of continental and regional spread remain undefined. Here, the authors investigate recent patterns of spread using Vibrio cholerae genomic surveillance data collected by a consortium of seven African Union member states from 2019-2024.

    • Gerald Mboowa
    • Nathaniel Lucero Matteson
    • Sofonias Kifle Tessema
    ResearchOpen Access
    Nature Communications
    P: 1-13
  • An algorithm that combines deep learning, Bayesian optimization and computer vision techniques can be used to autonomously tune a semiconductor spin qubit from a grounded device to Rabi oscillations.

    • Jonas Schuff
    • Miguel J. Carballido
    • Natalia Ares
    ResearchOpen Access
    Nature Electronics
    P: 1-10
  • Fractional Chern insulators have been observed in moiré MoTe2 at zero magnetic field, but the expected zero longitudinal resistance has not been demonstrated. Now it is shown that improving device quality allows this effect to appear.

    • Heonjoon Park
    • Weijie Li
    • Xiaodong Xu
    Research
    Nature Physics
    P: 1-7
  • Magic state distillation is achieved with logical qubits on a neutral-atom quantum computer using a dynamically reconfigurable architecture for parallel quantum operations.

    • Pedro Sales Rodriguez
    • John M. Robinson
    • Sergio H. Cantú
    Research
    Nature
    Volume: 645, P: 620-625
  • Typical quantum error correcting codes assign fixed roles to the underlying physical qubits. Now the performance benefits of alternative, dynamic error correction schemes have been demonstrated on a superconducting quantum processor.

    • Alec Eickbusch
    • Matt McEwen
    • Alexis Morvan
    ResearchOpen Access
    Nature Physics
    Volume: 21, P: 1994-2001
  • This study reports coherent Aharonov–Bohm interference, including statistical phase contributions, in a Fabry–Pérot interferometer at two even-denominator fractional quantum Hall states in high-mobility bilayer-graphene van der Waals heterostructures is reported.

    • Jehyun Kim
    • Himanshu Dev
    • Yuval Ronen
    ResearchOpen Access
    Nature
    Volume: 649, P: 323-329
  • Coherent control of plasmon wavepackets is essential for quantum information processing using flying electron qubits. Here, the authors demonstrate a method to isolate and select electron channels contributing to a plasmon using a cavity formed by local constrictions, enabling precise control of plasmon eigenstates.

    • Shintaro Takada
    • Giorgos Georgiou
    • Nobu-Hisa Kaneko
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-8
  • An error detecting code running on a trapped-ion quantum computer protects expressive circuits of eight logical qubits with a high-fidelity and partially fault-tolerant implementation of a universal gate set.

    • Chris N. Self
    • Marcello Benedetti
    • David Amaro
    Research
    Nature Physics
    Volume: 20, P: 219-224
  • In this alternative approach to quantum computation, the all-electrical operation of two qubits, each encoded in three physical solid-state spin qubits, realizes swap-based universal quantum logic in an extensible physical architecture.

    • Aaron J. Weinstein
    • Matthew D. Reed
    • Matthew G. Borselli
    ResearchOpen Access
    Nature
    Volume: 615, P: 817-822
  • Experimental measurements of high-order out-of-time-order correlators on a superconducting quantum processor show that these correlators remain highly sensitive to the quantum many-body dynamics in quantum computers at long timescales.

    • Dmitry A. Abanin
    • Rajeev Acharya
    • Nicholas Zobrist
    ResearchOpen Access
    Nature
    Volume: 646, P: 825-830
  • The efficiency of running quantum algorithms can be improved by expanding the hardware operations that a quantum computer can perform. A high-fidelity three-qubit iToffoli gate has now been demonstrated using superconducting qubits.

    • Yosep Kim
    • Alexis Morvan
    • Irfan Siddiqi
    Research
    Nature Physics
    Volume: 18, P: 783-788
  • Quantum supremacy is demonstrated using a programmable superconducting processor known as Sycamore, taking approximately 200 seconds to sample one instance of a quantum circuit a million times, which would take a state-of-the-art supercomputer around ten thousand years to compute.

    • Frank Arute
    • Kunal Arya
    • John M. Martinis
    Research
    Nature
    Volume: 574, P: 505-510
  • Quantum computers may help to solve classically intractable problems, such as simulating non-equilibrium dissipative quantum systems. The critical dynamics of a dissipative quantum model has now been probed on a trapped-ion quantum computer.

    • Eli Chertkov
    • Zihan Cheng
    • Michael Foss-Feig
    Research
    Nature Physics
    Volume: 19, P: 1799-1804
  • CMOS-based circuits can be integrated with silicon-based spin qubits and can be controlled at milli-kelvin temperatures, which can potentially help scale up these systems.

    • Samuel K. Bartee
    • Will Gilbert
    • David J. Reilly
    ResearchOpen Access
    Nature
    Volume: 643, P: 382-387
  • WIN332 is an HIV-1 Env protein designed to elicit a new class of Asn332-glycan-independent antibodies (type II) to the V3-glycan site of Env. WIN332 immunization rapidly induces type-II V3-glycan antibodies with low inhibitory activity indicative of a neutralization activity in macaques.

    • Ignacio Relano-Rodriguez
    • Jianqiu Du
    • Amelia Escolano
    ResearchOpen Access
    Nature Immunology
    P: 1-14
  • Chemical controllers made from DNA can be programmed to implement any dynamic behaviour compatible with chemical kinetics.

    • Yuan-Jyue Chen
    • Neil Dalchau
    • Georg Seelig
    Research
    Nature Nanotechnology
    Volume: 8, P: 755-762
  • The quantum charge-coupled device architecture is demonstrated, with its various elements integrated into a programmable trapped-ion quantum computer and performing simple quantum operations with state-of-the-art levels of error.

    • J. M. Pino
    • J. M. Dreiling
    • B. Neyenhuis
    Research
    Nature
    Volume: 592, P: 209-213
  • Uncorrected noise prevents quantum computers from running deep algorithms and outperforming classical machines. A method is now reported that allows noisy shallow quantum algorithms to be used to solve classically hard problems.

    • Sergey Bravyi
    • David Gosset
    • Marco Tomamichel
    Research
    Nature Physics
    Volume: 16, P: 1040-1045
  • Interactions between qubits and defect-related two-level systems in superconducting qubit devices are a major source of noise fluctuations that hinder error-mitigation performance. Here, the authors experimentally show that modulating this interaction can reduce noise fluctuation and improve error mitigation performance.

    • Youngseok Kim
    • Luke C. G. Govia
    • Abhinav Kandala
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-8
  • Quantum error correction protocols aim at protecting quantum information from corruption due to decoherence and imperfect control. Using three superconducting transmon qubits, Chow et al. demonstrate necessary elements for the implementation of the surface error correction code on a two-dimensional lattice.

    • Jerry M. Chow
    • Jay M. Gambetta
    • M Steffen
    Research
    Nature Communications
    Volume: 5, P: 1-9
  • Universal quantum logic operations with fidelity exceeding 99%, approaching the threshold of fault tolerance, are realized in a scalable silicon device comprising an electron and two phosphorus nuclei, and a fidelity of 92.5% is obtained for a three-qubit entangled state.

    • Mateusz T. Mądzik
    • Serwan Asaad
    • Andrea Morello
    Research
    Nature
    Volume: 601, P: 348-353
  • High-fidelity deterministic quantum state transfer and multi-qubit entanglement are demonstrated in a quantum network comprising two superconducting quantum nodes one metre apart, with each node including three interconnected qubits.

    • Youpeng Zhong
    • Hung-Shen Chang
    • Andrew N. Cleland
    Research
    Nature
    Volume: 590, P: 571-575
  • Measurements combined with post-processing of their outcomes can be used to prepare ordered quantum states. It has been shown that they can drive a Nishimori phase transition into a disordered state even in the presence of quantum errors.

    • Edward H. Chen
    • Guo-Yi Zhu
    • Abhinav Kandala
    Research
    Nature Physics
    Volume: 21, P: 161-167
  • While transmon is the most widely used superconducting qubit, the search for alternative qubit designs with improved characteristic is ongoing. Hyyppä et al. demonstrate a novel superconducting qubit, the unimon, that combines high anharmonicity and protection against low-frequency charge noise and flux noise.

    • Eric Hyyppä
    • Suman Kundu
    • Mikko Möttönen
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-14
  • Chemically inducible protein dimerization serves as a useful tool to investigate biological systems and construct synthetic circuits. Optimization of a protein-protein interaction dependent on the plant hormone gibberellin yields a portable dimerization system that can be combined with rapamycin to assemble logic gates.

    • Takafumi Miyamoto
    • Robert DeRose
    • Takanari Inoue
    Research
    Nature Chemical Biology
    Volume: 8, P: 465-470
  • Hematopoiesis influences the progression of cardiovascular disease, yet the influence of cardiovascular disease on the bone vasculature is unknown. Hoffmann, Luxán, Abplanalp et al. describe the response of the bone cell composition to myocardial infarction and provide a rationale for using anti-inflammatory therapies to prevent the deterioration of the bone vascular niche

    • Jedrzej Hoffmann
    • Guillermo Luxán
    • Stefanie Dimmeler
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-11
  • Genome-wide ancient DNA data from 225 individuals who lived in southeastern Europe between 12000 and 500 bc reveals that the region acted as a genetic crossroads before and after the arrival of farming.

    • Iain Mathieson
    • Songül Alpaslan-Roodenberg
    • David Reich
    Research
    Nature
    Volume: 555, P: 197-203