Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 647 results
Advanced filters: Author: Daniel Marcus Clear advanced filters
  • Human transplantation with allogeneic donor organs results in non-matching of MHC and differential presentation of T cell antigens. Here the authors show that in a lung transplanted SARS-CoV-2 infected patient T cell responses generated from the host may not be able to recognise infected cells within the graft and this may contribute to virus persistence.

    • Jonas Fuchs
    • Vivien Karl
    • Björn C. Frye
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-13
  • Ultra-high-capacity Li–air batteries have low Coulombic efficiency and degrade during re-charging, resulting in a poor cycle life. Redox mediators enable improvements but only at undesirably high potentials. The origin of this high potential and the impact of purported reactive intermediates has now been elucidated by resolving the charging mechanism using Marcus theory.

    • Sunyhik Ahn
    • Ceren Zor
    • Peter G. Bruce
    Research
    Nature Chemistry
    Volume: 15, P: 1022-1029
  • Seismological and geodetic data are used together with a machine learning earthquake catalogue to reconstruct magma migration before and during the 2025 volcano–tectonic crisis at Santorini volcano, indicating a coupling between Santorini and Kolumbo.

    • Marius P. Isken
    • Jens Karstens
    • Christian Berndt
    ResearchOpen Access
    Nature
    Volume: 645, P: 939-945
  • Redox mediators are important for improving the rechargeability of metal–air batteries, however, how they affect singlet oxygen formation and hence parasitic chemistry is unclear, hindering strategies for their improvement. Now, the mechanism of mediated peroxide and superoxide oxidation is elucidated, explaining how redox mediators either enhance or suppress singlet oxygen formation.

    • Yann K. Petit
    • Eléonore Mourad
    • Stefan A. Freunberger
    Research
    Nature Chemistry
    Volume: 13, P: 465-471
  • Federated learning (FL) algorithms have emerged as a promising solution to train models for healthcare imaging across institutions while preserving privacy. Here, the authors describe the Federated Tumor Segmentation (FeTS) challenge for the decentralised benchmarking of FL algorithms and evaluation of Healthcare AI algorithm generalizability in real-world cancer imaging datasets.

    • Maximilian Zenk
    • Ujjwal Baid
    • Spyridon Bakas
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-20
  • Experiments in 13C nanotubes reveal surprisingly strong nuclear spin effects that, if properly harnessed, could provide a mechanism for manipulation and storage of quantum information.

    • Björn Trauzettel
    • Daniel Loss
    News & Views
    Nature Physics
    Volume: 5, P: 317-318
  • A large genome-wide association study of more than 5 million individuals reveals that 12,111 single-nucleotide polymorphisms account for nearly all the heritability of height attributable to common genetic variants.

    • Loïc Yengo
    • Sailaja Vedantam
    • Joel N. Hirschhorn
    ResearchOpen Access
    Nature
    Volume: 610, P: 704-712
  • An expert-elicitation process identifies current methodological barriers for monitoring terrestrial biodiversity, and how technological and procedural development of robotic and autonomous systems may contribute to overcoming these challenges.

    • Stephen Pringle
    • Martin Dallimer
    • Zoe G. Davies
    ResearchOpen Access
    Nature Ecology & Evolution
    Volume: 9, P: 1031-1042
  • Many genetic loci have been identified to be associated with kidney disease, but the molecular mechanisms are not well understood. Here, the authors perform epigenome-wide association studies on kidney function measures to identify epigenetic marks and pathways involved in kidney function.

    • Pascal Schlosser
    • Adrienne Tin
    • Alexander Teumer
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-16
  • Serum urate concentration can be studied in large datasets to find genetic and epigenetic loci that may be related to cardiometabolic traits. Here the authors identify and replicate 100 urate-associated CpGs, which provide insights into urate GWAS loci and shared CpGs of urate and cardiometabolic traits.

    • Adrienne Tin
    • Pascal Schlosser
    • Anna Köttgen
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-18
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • HistoPlexer, a deep learning model, generates multiplexed protein expression maps from H&E images, capturing tumour–immune cell interactions. It outperforms baselines, enhances immune subtyping and survival prediction and offers a cost-effective tool for precision oncology.

    • Sonali Andani
    • Boqi Chen
    • Gunnar Rätsch
    ResearchOpen Access
    Nature Machine Intelligence
    Volume: 7, P: 1292-1307
  • A genome-wide association study meta-analysis combined with multiomics data of osteoarthritis identifies 700 effector genes as well as biological processes with a convergent involvement of multiple effector genes; 10% of these genes express the target of approved drugs.

    • Konstantinos Hatzikotoulas
    • Lorraine Southam
    • Eleftheria Zeggini
    ResearchOpen Access
    Nature
    Volume: 641, P: 1217-1224
  • Reduced glomerular filtration rate (eGFR) is a hallmark of chronic kidney disease. Here, Pattaro et al. conduct a meta-analysis to discover several new loci associated with variation in eGFR and find that genes associated with eGFR loci often encode proteins potentially related to kidney development.

    • Cristian Pattaro
    • Alexander Teumer
    • Caroline S. Fox
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-19
  • Cas9 DNA targeting is inherently sequence specific but not temporally controlled. Here, authors spatiotemporally couple Cas9 activity to target site transcription in eukaryotes and exploit this to preferentially edit the more highly transcribed of two alleles that harbor identical Cas9 targets.

    • Gregory W. Goldberg
    • Manjunatha Kogenaru
    • Jef D. Boeke
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-19
  • Non-planar nanographenes are materials with promising prospects for chiroptical and optoelectronic applications. Now bilayer molecular nanographenes composed of two hexa-peri-haxabenzocoronene units linked by a spirocycle have been synthesized. Modulation of the electronic properties of one of the benzocoronene units enables an electron-transfer process between the donor and acceptor moieties, leading to the formation of zwitterionic open-shell bilayer spironanographenes.

    • Juan Lión-Villar
    • Jesús M. Fernández-García
    • Nazario Martín
    ResearchOpen Access
    Nature Chemistry
    Volume: 17, P: 1099-1106
  • Inbreeding depression has been observed in many different species, but in humans a systematic analysis has been difficult so far. Here, analysing more than 1.3 million individuals, the authors show that a genomic inbreeding coefficient (FROH) is associated with disadvantageous outcomes in 32 out of 100 traits tested.

    • David W Clark
    • Yukinori Okada
    • James F Wilson
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-17
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Mature parts of the shallow megathrust beneath Costa Rica are characterized by striking corrugations that may channel fluids, according to seismic images. Nascent sections of the subduction zone plate boundary appear only weakly corrugated.

    • Joel H. Edwards
    • Jared W. Kluesner
    • Kristina Okamoto
    Research
    Nature Geoscience
    Volume: 11, P: 197-202
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Using data from a single time point, passenger-approximated clonal expansion rate (PACER) estimates the fitness of common driver mutations that lead to clonal haematopoiesis and identifies TCL1A activation as a mediator of clonal expansion.

    • Joshua S. Weinstock
    • Jayakrishnan Gopakumar
    • Siddhartha Jaiswal
    Research
    Nature
    Volume: 616, P: 755-763
  • Quinones are key electron acceptors in nature, however, the role of their excited states is not fully understood. Femtosecond spectroscopy and quantum calculations on the prototypical parabenzoquinone radical anion provide insight into quinones’ intrinsic electron-accepting ability, revealing how unbound electronically excited states relax to form the ground-state radical anion.

    • Daniel A. Horke
    • Quansong Li
    • Jan R. R. Verlet
    Research
    Nature Chemistry
    Volume: 5, P: 711-717
  • Understanding the process of exciton fission, which occurs in certain organic materials, could lead to the development of more efficient photovoltaic devices. Here, an expression derived from first principles is used to accurately characterize the singlet fission rate of a wide array of materials, reproducing a transition from weak to strong coupling as a function of molecular separation.

    • Shane R. Yost
    • Jiye Lee
    • Troy Van Voorhis
    Research
    Nature Chemistry
    Volume: 6, P: 492-497
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16