Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 434 results
Advanced filters: Author: David P Gavin Clear advanced filters
  • Precise and efficient CRISPR genome editing requires specialized delivery systems. Here, the authors develop Coomassie lipidoids that deliver purified adenine base editors into retinal tissues, making it possible to achieve robust genome editing with a defined, non-viral nanomedicine.

    • Jianye Zhang
    • Rafał Hołubowicz
    • Krzysztof Palczewski
    ResearchOpen Access
    Nature Communications
    P: 1-18
  • Meningiomas are common brain tumors with variable behavior. This study reveals high STING expression across multiple cell types in the meningioma microenvironment. STING agonism triggers tumor cell death via programmed necrosis and pyroptosis, enhancing survival in preclinical models.

    • Mark W. Youngblood
    • Shashwat Tripathi
    • Amy B. Heimberger
    ResearchOpen Access
    Nature Communications
    P: 1-19
  • Many vascular‑disease risk loci lack defined causal genes. Here, the authors integrate functional genomics and CRISPR screens to identify genes influencing smooth muscle cell behaviour, validating roles for FES, BCAR1, CARF and SMARCA4, with Fes loss promoting atherosclerosis and hypertension.

    • Charles U. Solomon
    • David G. McVey
    • Shu Ye
    ResearchOpen Access
    Nature Communications
    P: 1-17
  • Population-level analyses and in vitro experiments show that a specific genetic variant of cyclin D3 inhibits the growth of the malaria-causing parasite Plasmodium falciparum in erythrocytes, and suggest that its high frequency in Sardinia was driven by past endemic malaria.

    • Maria Giuseppina Marini
    • Maura Mingoia
    • Francesco Cucca
    ResearchOpen Access
    Nature
    P: 1-9
  • JWST’s COSMOS-Web survey is used to create an ultra-high-detail dark matter map, revealing hidden filaments, clusters and distant structures. By tracing features out to z = 2, this map shows how dark and luminous matter build the cosmic web across cosmic time.

    • Diana Scognamiglio
    • Gavin Leroy
    • John R. Weaver
    Research
    Nature Astronomy
    P: 1-10
  • Neural crest cells have been implicated in heart development, yet the mechanisms by which they act have remained elusive. Here, the authors show neural crest cells modulate Wnt signalling in cardiac progenitors, providing new insight into the mechanisms underpinning congenital heart defects.

    • Sophie Wiszniak
    • Dimuthu Alankarage
    • Quenten Schwarz
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-17
  • De novo and inherited dominant variants in genes encoding U4 and U6 small nuclear RNAs are identified in individuals with retinitis pigmentosa. The variants cluster at nucleotide positions distinct from those implicated in neurodevelopmental disorders.

    • Mathieu Quinodoz
    • Kim Rodenburg
    • Carlo Rivolta
    ResearchOpen Access
    Nature Genetics
    Volume: 58, P: 169-179
  • Diagnostic filtering is an important step to analyze the functional and clinical significance of the large number of genetic variants identified from next-generation genome sequencing data. Here, the authors develop a flexible and scalable system for diagnostic filtering of genetic variants using G2P with Ensembl VEP.

    • Anja Thormann
    • Mihail Halachev
    • David R. FitzPatrick
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-10
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The xylosyltransferase isoenzymes XT1 and XT2 catalyze the first glycosylation step in the biosynthesis of proteoglycans. Now, bump-and-hole engineering of XT1 and XT2 enables substrate profiling and modification of proteins as designer proteoglycans to modulate cellular behavior.

    • Zhen Li
    • Himanshi Chawla
    • Benjamin Schumann
    ResearchOpen Access
    Nature Chemical Biology
    P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Whole-genome sequencing, transcriptome-wide association and fine-mapping analyses in over 7,000 individuals with critical COVID-19 are used to identify 16 independent variants that are associated with severe illness in COVID-19.

    • Athanasios Kousathanas
    • Erola Pairo-Castineira
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 607, P: 97-103
  • The authors study a Pt/Nb hybrid structure by scanning microscopy and muon spin rotation. They find an anomalous absence of Meissner screening near the Pt/Nb interface due to spin-triplet pair correlations driven by spin-orbit coupling alone with no ferromagnetic layer necessary.

    • Machiel Flokstra
    • Rhea Stewart
    • Stephen Lee
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-5
  • The dorsal peduncular area of the mouse brain functions as a network hub that integrates diverse cortical and thalamic inputs to regulate neuroendocrine and autonomic responses.

    • Houri Hintiryan
    • Muye Zhu
    • Hong-Wei Dong
    ResearchOpen Access
    Nature
    P: 1-15
  • Using viral barcode tracing to detect interactions between glioblastoma cells and non-malignant astrocytes in patient samples, investigators discovered a pathway that reduces tumour-specific immunity and identified potential therapeutic targets.

    • Brian M. Andersen
    • Camilo Faust Akl
    • Francisco J. Quintana
    Research
    Nature
    Volume: 644, P: 1097-1106
  • Whole-genome sequencing analysis of individuals with primary immunodeficiency identifies new candidate disease-associated genes and shows how the interplay between genetic variants can explain the variable penetrance and complexity of the disease.

    • James E. D. Thaventhiran
    • Hana Lango Allen
    • Kenneth G. C. Smith
    Research
    Nature
    Volume: 583, P: 90-95
  • A population of TRAIL-positive astrocytes in glioblastoma contributes to an immunosuppressive tumour microenvironment and this mechanism can be targeted with an engineered oncolytic virus to improve outcomes.

    • Camilo Faust Akl
    • Brian M. Andersen
    • Francisco J. Quintana
    Research
    Nature
    Volume: 643, P: 219-229
  • Analysis of whole-genome sequencing data across 2,658 tumors spanning 38 cancer types shows that chromothripsis is pervasive, with a frequency of more than 50% in several cancer types, contributing to oncogene amplification, gene inactivation and cancer genome evolution.

    • Isidro Cortés-Ciriano
    • Jake June-Koo Lee
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 331-341
  • Analysis of mitochondrial genomes (mtDNA) by using whole-genome sequencing data from 2,658 cancer samples across 38 cancer types identifies hypermutated mtDNA cases, frequent somatic nuclear transfer of mtDNA and high variability of mtDNA copy number in many cancers.

    • Yuan Yuan
    • Young Seok Ju
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 342-352
  • RH5, which is part of the trimeric RCR-complex essential for invasion, is a vaccine candidate for malaria. Here, Williams et al. show that monoclonal antibodies targeting each of the three proteins in the RCR-complex can work together to more effectively block the invasion of red blood cells by Plasmodium falciparum and design a combination vaccine candidate.

    • Barnabas G. Williams
    • Lloyd D. W. King
    • Simon J. Draper
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-16
  • COVID-19 can be associated with neurological complications. Here the authors show that markers of brain injury, but not immune markers, are elevated in the blood of patients with COVID-19 both early and months after SARS-CoV-2 infection, particularly in those with brain dysfunction or neurological diagnoses.

    • Benedict D. Michael
    • Cordelia Dunai
    • David K. Menon
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-15
  • This study uses data-driven modelling to predict a 24–91% increase in methane emissions from global lakes and reservoirs by 2080–2099 under various climate scenarios. Temperature and seasonality changes are key drivers, highlighting the need for climate action.

    • David Bastviken
    • Matthew S. Johnson
    ResearchOpen Access
    Nature Water
    Volume: 3, P: 1397-1410